• Title/Summary/Keyword: 출력 데이터편집

Search Result 16, Processing Time 0.019 seconds

The Study on Dynamic Images Processing for Finger Languages (지화 인식을 위한 동영상 처리에 관한 연구)

  • Kang, Min-Ji;Choi, Eun-Sook;Sohn, Young-Sun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.184-189
    • /
    • 2004
  • In this paper, we realized a system that receives the dynamic images of finger languages, which is the method of intention transmission of the hearing disabled person, using the white and black CCD camera, and that recognizes the images and converts them to the editable text document. We use the afterimage to draw a sharp line between indistinct images and clear images from a series of inputted images, and get the character alphabet from the away of continuous images and output the accomplished character to the word editor by applying the automata theory. After the system removes the varied wrist part from the data of clean image, it gets the controid point of hand by the maximum circular movement method and recognizes the hand that is necessary to analyze the finger languages by applying the circular pattern vector algorithm. The system abstracts the characteristic vectors of the hand using the distance spectrum from the center of the hand and it compares the characteristic vector of inputted pattern from the standard pattern by applying the fuzzy inference and recognizes the movement of finger languages.

Counterfeit Money Detection Algorithm using Non-Local Mean Value and Support Vector Machine Classifier (비지역적 특징값과 서포트 벡터 머신 분류기를 이용한 위변조 지폐 판별 알고리즘)

  • Ji, Sang-Keun;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.55-64
    • /
    • 2013
  • Due to the popularization of digital high-performance capturing equipments and the emergence of powerful image-editing softwares, it is easy for anyone to make a high-quality counterfeit money. However, the probability of detecting a counterfeit money to the general public is extremely low. In this paper, we propose a counterfeit money detection algorithm using a general purpose scanner. This algorithm determines counterfeit money based on the different features in the printing process. After the non-local mean value is used to analyze the noises from each money, we extract statistical features from these noises by calculating a gray level co-occurrence matrix. Then, these features are applied to train and test the support vector machine classifier for identifying either original or counterfeit money. In the experiment, we use total 324 images of original money and counterfeit money. Also, we compare with noise features from previous researches using wiener filter and discrete wavelet transform. The accuracy of the algorithm for identifying counterfeit money was over 94%. Also, the accuracy for identifying the printing source was over 93%. The presented algorithm performs better than previous researches.

Development of an Object-Oriented Framework Data Update System (객체 기반의 기본지리정보 갱신시스템 개발)

  • Lee, Jin-Soo;Choi, Yun-Soo;Seo, Chang-Wan;Jeon, Chang-Dong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.31-44
    • /
    • 2008
  • The 1st phase framework data implementation of National Geographic Information Systems (NGIS) used 1:5,000 digital map with 5 years updating period which is lacking in the latest information. This is a significant factor which hinders the use of framework data. This study proposed the efficient technical method of a location based object data management and system implementation for updating framework data. First, we did an object-oriented data modeling and database design using a location based features identifier(UFID: Unique Feature IDentifier). The second, we developed the system with various functions such as a location based UFID creation, input and output, a spatial and attribute data editing, an object based data processing using UML(Unified Modeling Language). Finally, we applied the system to the study area and got high quality data of 99% accuracy and 35% benefit effect of personnel expenses compare to the previous method. We expect that this study can contribute to the maintenance of national framework data as well as the revitalization of various GIS markets by providing user the latest framework data and that we can develop the methods of a feature-change modeling and monitoring using an object based data management.

  • PDF

Development of Data Acquisition System for Quantification of Autonomic Nervous System Activity and It's Clinical Use (자율신경계의 활성도 측정을 위한 Data Acquisition System의 개발 및 임상응용)

  • Shin, Dong-Gu;Park, Jong-Sun;Kim, Young-Jo;Shim, Bong-Sup;Lee, Sang-Hak;Lee, Jun-Ha
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • Background: Power spectrum analysis method is a powerful noninvasive tool for quantifying autonomic nervous system activity. In this paper, we developed a data acquistion system for estimating the activity of the autonomic nervous system by the analysis of heart rate and respiratory rate variability using power spectrum analysis. Materials and methods: For the detection of QRS peak and measurement of respiratory rate from patient's ECG, we used low-pass filter and impedence method respectively. This system adopt an isolated power for patient's safety. In this system, two output signals can be obtained: R-R interval heart rate) and respiration rate time series. Experimental ranges are 30-240 BPM for ECG and 15-80 BPM for respiration. Results: The system can acquire two signals accurately both in the experimental test using simulator and in real clinical setting. Conclusion: The system developed in this paper is efficient for the acquisition of heart rate and respiration signals. This system will play a role in research area for improving our understanding of the pathophysiologic involvement of the autonomic nervous system in various disease states.

  • PDF

Modeling Nutrient Uptake of Cucumber Plant Based on EC and Nutrient Solution Uptake in Closed Perlite Culture (순환식 펄라이트재배에서 EC와 양액흡수량을 이용한 오이 양분흡수 모델링)

  • 김형준;우영회;김완순;조삼증;남윤일
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.75-76
    • /
    • 2001
  • 순환식 펄라이트재배에서 배액 재사용을 위한 양분흡수 모델링을 작성하고자 EC 처리(1.5, 1.8, 2.1, 2.4, 2.7 dSㆍm-1)를 수행하였다. 생육 중기까지 EC 수준에 따른 양액흡수량은 차이가 없었지만 중기 이후 EC가 높을수록 흡수량이 감소되는 경항을 보였다(Fig. 1). NO$_3$-N, P 및 K의 흡수량은 생육기간 동안 처리간 차이를 유지하였는데 N과 K는 생육 중기 이후 일정 수준을 유지하였으나 P는 생육기간 동안 다소 증가되는 경향을 보였다. S의 흡수량은 생육 중기 이후 모든 처리에서 급격한 감소를 보였으며 생육 후기에는 처리간에 차이가 없었다(Fig. 2). 오이의 무기이온 흡수율에서와 같이 흡수량에서도 EC간 차이를 보여 EC를 무기이온 흡수량을 추정하는 요소로 이용할 수 있을 것으로 생각되었다. 무기이온 흡수량은 모든 EC 처리간에 생육 초기에는 차이를 보이지 않았으나 생육중기 이후에는 뚜렷한 차이를 보인 후 생육 후기의 높은 농도에서 그 차이가 다소 감소되는 경향을 보였다. 단위일사량에 따른 양액흡수량과 EC를 주된 변수로 한 오이의 이온 흡수량 예측 회귀식을 작성하였는데 모든 무기이온 흡수량 추정식의 상관계수는 S를 제외한 모든 이온에서 높게 나타났는데 특히 N, P, K 및 Ca에서 높았다. S이온에서의 상관계수는 0.47로 낮게 나타났으나 각 이온들의 회귀식에 대한 상관계수는 모두 1% 수준에서 유의성을 보여 위의 모델식을 순환식 양액재배에서 무기이온 추정식으로 사용이 가능할 것으로 생각되었다(Table 1). 이를 이용한 실측치와의 비교는 신뢰구간 1%내에서 높은 정의상관을 보여 실제적인 적용이 가능할 것으로 생각되었다(Fig 3)..ble 3D)를 바탕으로 MPEG-4 시스템의 특징들을 수용하여 구성되고 BIFS와 일대일로 대응된다. 반면에 XMT-0는 멀티미디어 문서를 웹문서로 표현하는 SMIL 2.0 을 그 기반으로 하였기에 MPEG-4 시스템의 특징보다는 컨텐츠를 저작하는 제작자의 초점에 맞추어 개발된 형태이다. XMT를 이용하여 컨텐츠를 저작하기 위해서는 사용자 인터페이스를 통해 입력되는 저작 정보들을 손쉽게 저장하고 조작할 수 있으며, 또한 XMT 파일 형태로 출력하기 위한 API 가 필요하다. 이에, 본 논문에서는 XMT 형태의 중간 자료형으로의 저장 및 조작을 위하여 XML 에서 표준 인터페이스로 사용하고 있는 DOM(Document Object Model)을 기반으로 하여 XMT 문법에 적합하게 API를 정의하였으며, 또한, XMT 파일을 생성하기 위한 API를 구현하였다. 본 논문에서 제공된 API는 객체기반 제작/편집 도구에 응용되어 다양한 멀티미디어 컨텐츠 제작에 사용되었다.x factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.0$\mu$M이 적당하며, 초기배발달을 유기할 때의 효과적인 cysteamine의 농도는 25~50$\mu$M인 것으로 판단된다.N)A(N)/N을 제시하였다(A(N)=N에 대한 A값). 위의 실험식을 사용하여 헝가리산 Zempleni 시료(15%

  • PDF

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.