• Title/Summary/Keyword: 출력포트 확장 방식

Search Result 5, Processing Time 0.023 seconds

Performance Analysis of Input-Output Buffering ATM Switch with Output-port Expansion Mechanism (출력포트 확장 방식을 사용한 입출력 버퍼형 ATM 교환기에서의 성능 비교 분석)

  • Kwon, Se-Dong;Park, Hyun-Min
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.531-542
    • /
    • 2002
  • An input and output buffering ATM switch conventionally operates in either Queueloss mode or Backpressure mode. Recently, a new mode, which is called Hybrid mode, was proposed to overcome the drawbacks of Queueloss mode and Backpressure mode. In Hybrid mode, when both the destined output buffer and the originfted input buffer are full, a cell is dropped. This thesis analyzes the cell loss rate and the cell delay of Queueloss, Backpressure and Hybrid modes in a switch adopting output-port expansion scheme under uniform traffic. Output-port expansion scheme allows only one cell from an input buffer to be switched during one time slot. If several cells switch to a same destined output port, the number of maximum transfer cells is restricted to K (Output-port expansion ratio). The simulation results show that if an offered load is less than 0.9, Hybrid mode has lower cell loss rate than the other modes; otherwise, Queueloss mode illustrates the lowest cell loss rate, which is a different result from previous researches. However, the difference between Hybrid and Queueloss modes is comparably small. As expected, the average cell delay in Backpressure mode is lower than those of Queueloss mode and Hybrid mode, since the cell delay due to the retransmission of higher number of dropped cells in Backpressure mode is not considered.

Extended B-Tree(EBT) Copy Network for Multicast Switches (멀티캐스트 스위치를 위한 확장된 B-Tree 복사망)

  • 신재구;손유익
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10c
    • /
    • pp.561-563
    • /
    • 2000
  • 본 논문은 멀티캐스트 패킷 스위치의 성능 향상에 관하여 언급한다. 네트워크에 요구된 복사본의 수가 네트워크의 크기보다 클 경우 발생되는 오버플로우 문제를 해결하기 위해 Lee의 브로드캐스트 반얀 네트워크(BBN)를 기반으로 하여 다중경로와 다중출력을 제공하는 기능이 추가된 구조를 제안하였으며, 여기에 입력에서 다음 처리해야할 패킷의 fanout 값이 남아있는 BBN의 출력포트 수보다 클 경우 패킷이 복사될 수 없게됨으로서 발생되어질 수 있는 네트워크의 성능이 저하되는 문제를 해결하기 위하여, 셀분할 알고리즘을 이용한 수정된 DAE(dummy address encoder) 방식을 제안하였다.

  • PDF

Service Curve Allocation Schemes for High Network Utilization with a Constant Deadline Computation Cost (상수의 데드라인 계산 비용으로 높은 네트웍 유용도를 얻는 서비스 곡선 할당 방식)

  • 편기현;송준화;이흥규
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.4
    • /
    • pp.535-544
    • /
    • 2003
  • Integrated services networks should guarantee end-to-end delay bounds for real-time applications to provide high quality services. A real-time scheduler is installed on all the output ports to provide such guaranteed service. However, scheduling algorithms studied so far have problems with either network utilization or scalability. Here, network utilization indicates how many real-time sessions can be admitted. In this paper, we propose service curve allocation schemes that result in both high network utilization and scalability in a service curve algorithm. In service curve algorithm, an adopted service curve allocation scheme determines both network utilization and scalability. Contrary to the common belief, we have proved that only a part of a service curve is used to compute deadlines, not the entire curve. From this fact, we propose service curve allocation schemes that result in a constant time for computing deadlines. We through a simulation study that our proposed schemes can achieve better network utilizations than Generalized processor Sharing (GPS) algorithms including the multirate algorithm. To our knowledge, the service curve algorithm adopting our schemes can achieve the widest network utilization among existing scheduling algorithms that have the same scalability.

A Study on Multicast ATM Switch with Tandem Crosspoints (탠덤크로스포인터 멀티캐스트 ATM 스위치 연구)

  • Ryul, Kim-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.157-165
    • /
    • 2006
  • This paper proposes a new output-buffered multicast ATM switch with tandem crosspoints switching fabric, named the MTCOS(Multicast Tandem Crosspoint Output-buffered Switch). The MTCOS consists of multiple simple crosspoint switch fabrics, named TCSF(Tandem Crosspoint Switch Fabric) , and concentrated output buffers for efficient multicasting. The TCSF resolves the cell delay deviation problem which the self-routing crossbar switches inherently have. Further, it offers multiple concurrent pathes from one input to multiple output ports. It also provides multi-channel switching by easy software configuration and has several desirable characteristics such as scalability, high Performance, and modularity. A shared traffic concentration and output queuing strategies of the MTCOS results in lower cell loss as well as lower cell delay time over a wide range of multicast traffic. Furthermore, it has lower hardware complexity than that of the SCOQ and Knockout multicast switch to achieve the same Knockout concentration rate as the conventional switches. It is shown that the proposed switch can be easily applied to design high performance for any multicast traffic by analytic analysis and computer simulation.

  • PDF

Experimental Research on the Power Improvement by Increasing Intake pressure in a 1.4 L Turbocharged CNG Port Injection Spark Ignition Engine (1.4L 급 터보 CNG 엔진에서 흡기압력 상승에 따른 출력 증대 효과에 관한 연구)

  • Lee, Jeong-Woo;Park, Cheol-Woong;Bae, Jong-Won;Kim, Chang-Gi;Lee, Sun-Youp;Kim, Yong-Rae
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.90-96
    • /
    • 2019
  • Natural gas has been regarded as one of major alternative fuels, because of the increment of mining shale gas and supplying PNG(Pipeline Natural Gas) from Russia. Thus, it needs to broaden the usage of natural gas as the increasing its supplement. In this situation, application of natural gas on the transport area is a good suggestion to reduce exhaust emissions such as CO2(carbon dioxides) and soot from vehicles. For this reason, natural gas can be applied to SI(spark ignition) engines due to its anti-knocking and low auto-ignitibility characteristics. Recently, since turbocharged SI engine has been widely used, it needs to apply natural gas on the turbocharged SI engine. However, there is a major challenge for using natural gas on turbocharged SI engine, because it is hard to make natural gas direct injection in the cylinder, while gasoline is possible. As a result, there is a loss of fresh air when natural gas is injected by MPI (multi-point injection) method under the same intake pressure with gasoline-fueled condition. It brings the power reduction. Therefore, in this research, intake pressure was increased by controling the turbocharger system under natural gas-fueled condition to improve power output. The goal of improved power is the same level with that of gasoline-fueled condition under the maximum torque condition of each engine speed. As a result, the maximum power levels, which are the same with those of gasoline-fueled conditions, with improved brake thermal efficiency could be achieved for each engine speed (from 2,000 to 6,000 rpm) by increasing intake pressure 5-27 % compared to those of gasoline-fueled conditions.