• Title/Summary/Keyword: 축열물질

Search Result 95, Processing Time 0.039 seconds

The Effects of Additives on the Thermal Properties of a Clathrate Compound(I) -The Case of Ethanol- (포접화합물의 열물성에 미치는 첨가제의 효과(I) -TMA 물계 포접화합물에 Ethanol을 첨가한 경우-)

  • 김진흥;정낙규;김석현;김창오;강승현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.258-264
    • /
    • 2004
  • The ice thermal storage system is to use consolation latent heat of water. But, supercooling phenomenon of water during phase change is to increase the cooling capacity and to decrease COP of the refrigerator. Furthermore, this causes the operation cost of system to increase and the efficiency of energy to decrease. Therefore, the better thermal storage material than the water is required. The purpose of this study is to improve supercooling characteristics and thermal properties of TMA 30wt% clathrate by using Ethanol.

Performance of a Latent Heat Storage System Using Two-Phase Closed Thermosyphon(II) - The Case of Constant Temperature Heating Fluid (열싸이폰을 이용한 잠열축열시스템의 성능실험(II) - 일정한 온도의 가열유체를 사용한 경우 -)

  • Kim, Tae-Il;Kim, Ki-Hyun
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.37-46
    • /
    • 1992
  • An experimental study was carried out to investigate the performance of a latent heat storage system using paraffin wax as the phase change material. A thermosyphon was employed to transfer heat from the hot ethylene glycol flowing across the evaporator section of the thermosyphon into the wax. In order to increase the effective thermal conductivity of wax, layers of copper wire mesh were immersed in the wax. Experiments were run for volume ratios of 2%, 3%, and 4%, varying mass flow rate of ethylene glycol in each case. Some of the important results are as follows : (1) The wire mesh enhanced the conductive hea transfer and thus, helped even out the temperature distribution in the wax : (2) The increase of the number of layers of wire mesh increased the conduction. However, it also resulted in increasing the resistance to the convective motion of liquefied wax : and (3) There is an optimal number of layers of wire mesh, maximizing the performance of the storage system, which occurred at a volume ratio of $3{\sim}4%$ in the present study.

  • PDF

Heat Transfer Enhancement by Fins in a Latent Heat Storage System Using Phase Change Material (상변화물질을 이용한 축열시스템에서 핀에 의한 열전달 촉진 연구)

  • 한승구;한귀영
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.115-122
    • /
    • 1996
  • Heat transfer characteristics of low temperature latent heat storage systems have been examined for the circular finned and unfinned tubes using Na$_2$B$_4$O$\_$7/10H$_2$O as a phase change material. In order to reduce the supercooling of PCM, 3 wt% of Na$_2$B$_4$O$\_$7/10H$_2$O was added as the nucleating agent and 2.2 wt% of acrylic acid sodium sulfate was used as the thickener. The heat storage vessel has dimension of 530 mm height, 74 mm 1.D. and inner heat transfer tube is 480 mm height and 13.5 mm O.D. Water was employed as the heat transfer fluid. During the heat recovery experiment, the heat recovery rate was affected by the flow rates and inlet temperature of heat transfer fluid. The enhancement of heat transfer by fins over the unfinned tube system was found to be negligible in the thin finned tube systems, whereas the heat transfer coefficient in the thick finned tube system is approximately 60% higher than that in the unfinned lobe system. The experimentally determined heat transfer coefficient for the unfinned tube and thick finned tube systems are 150-260 W/㎡$^{\circ}C$ and 230-530 W/㎡$^{\circ}C$, respectively. The fin efficiency based on the heat transfer coefficient and area increased by fins was found to be 0.05 and 0.26 for the thin and the thick finned tube systems.

  • PDF

Heat Transfer in Heat Storage System with P.C.M. -Experimental and Numerical Investigation during Inward Melting in a Vertical Tube- (상변화 물질을 사용한 축열조에서의 열전달 -수직원관내에서의 내향용융실험 및 수치해석-)

  • Yim, Chang-Soon;Choi, Guk-Gwang;Lee, Cha-Moon;Kim, Jun-Gun;Shong, Ha-Jin;Cho, Nam-Cheol
    • Solar Energy
    • /
    • v.10 no.1
    • /
    • pp.5-13
    • /
    • 1990
  • In the present investigation, experiments and numerical analysis during melting process of a phase change material were performed to research heat transfer phenomena generated by means of conduction and natural convection in the vertical tube at inward melting. The phase change material used in the experiments is 99 percent pure n-Docosane paraffin($C_{22}H_{46}$). In the results, it is found that the velocity of phase change interface at the top of tube is faster than at the bottom of tube because of the effect of natural convection, and the distribution of velocity at the liquid region is little affected by the initial temperature of phase change material. The velocity of phase change interface is slower as the initial temperature of phase change material is lower, and the effect of natural convection is larger as the aspect ratio of tube is larger. In tendency of heat transfer phenomena, the experimental results were well corresponded with numerical results. But there were a little disagrements between the results of experiment and numerical analysis because of the assumption of the constant volumetric expansion coefficient in numerical analysis.

  • PDF

Computer Simulation for the Thermal Analysis of the Energy Storage Board (에너지 축열보드 열해석을 위한 컴퓨터 수치해석)

  • 강용혁;엄태인;곽희열
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.224-232
    • /
    • 1999
  • Latent heat storage system using micro-encapsuled phase change material is effective method for floor heating of house and building. The temperature profile in capsule block and flow rate of hot water are important parameters for the development of heat storage system. In the present study, a mathematical model based on 3-D, non-steady state, Navier-Stokes equations, scalar conservation equations and turbulence model ($\kappa$-$\varepsilon$), is used to predict the temperature profiles in capsule and the velocity vectors in hot water pipe. The multi-block grids and fine grids embedding are used to join the circle in hot water pipe and square in capsule block. The phase change process of the capsule is quite complex not only because the size of phase change material is very small, but also because phase change material is mixed with the cement to form thermal storage block. In calculation, it's assumed that the phenomena of phase change is limited only the thermal properties of phase change material and the change of boundary is not happened in capsule. The purpose of this study is to calculate the temperature profiles in capsule block and velocity vectors in hot water pipe using the numerical calculation. Two kinds of thermal boundary condition were considered, the first (case 1) is the adiabatic condition for the both outside surfaces of the wall, the second (case 2) is the case in which one surface is natural convection with atmosphere and another surface is adaibatic. Calculation results are shown that the temperature profile in capsule block for case 1 is higher than that for case 2 due to less heat loss in adaibatic surface. Specially, in the domain of near Y=0, the difference of temperature is greater in case 1 than in case 2. The detailed experimental data of capsule block on the temperature profile and the thermal properties such as specific heat and coefficient of heat transfer with the various temperature are required to predict more exact phenomena of heat transfer.

  • PDF

Development of a Heat Regenerator Using High Temperature Phase Change Material : Part I Prediction of Heat Transfer Phenomena in a Single Module of Phase Change Material (초고온 상변화 물질을 이용한 열회수장치 개발:Part I 축열재 모듈의 열전달 현상 해석)

  • 박준규;서경원;김상진
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.258-267
    • /
    • 1993
  • A mathematical model has been developed to describe heat transfer phenomena in a PCM (phase change material) module for development of an energy recovery system. The PCM module, melting point of which is around 1673 K, consists of silicon(96.8%), aluminium(2.7%) and marginal amounts of impurities such as Ca, Fe and Ti. The module is covered by a capsule that consists of SiC(58%) and graphite(42%). Physical properties that are required for model predictions were cited from the references. The apparent capacity method and the postiterative method wert used in the mathematical model to describe the phase changing mechanism. Temperature and velocity of fluid are the major variables in the model calculation. For the gas temperature of 1773 K that simulates real operating conditions, the prediction shows that PCM is rapidly melted to axial direction. However, for the gas temperature of 3000 K that is higher than the real conditions, PCM is melted rapidly to the radial direction. The gas velocity has no influence on the melting phenomena of the PCM except when the gas velocity is relatively low. At the low gas velocity asymmetry of the temperature profiles in PCM is obtained.

  • PDF

Development of Automatic System to Measure Transmitted Ultrasonic Speed of Raw Ginseng (수삼의 초음파 전달속도 계측 자동화 시스템 개발)

  • 서동현;김기대;강호양;김찬수;이현동
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.592-599
    • /
    • 2002
  • 본 연구에서는 수삼의 가공전 선별을 위해 현장에서 편리하게 사용할 수 있는 초음파 전달 속도 계측 자동화 시스템을 개발하여 그 성능을 평가하고자 하였으며 결과를 요약하면 다음과 같다. 1. 개발된 시스템은 제어용 컴퓨터, 시스템 구동 및 탐촉자 이동 장치, 하중 변환장치, 초음파 발생 및 송수신 장치 등으로 구성되었다. 2. 제어 및 계측용 프로그램은 압축력, 측정 대상물의 크기, 초음파 전달 시간을 순차적으로 계측하여 초음파 전달 속도를 계산하는 알고리즘을 개발하였으며, Visual Basic 6.0으로 작성되었다. 모터의 작동, A/D 변환, RS232C 통신 등과 관련된 부분은 각각의 모듈화된 함수로서 구동하고자 하였다. 3. 개발된 시스템의 속도와 거리별 이동 거리별 오차를 측정한 결과 0∼0.04mm 범위를 나타내었다. 이 값은 시스템의 허용오차인 0.17mm 오차보다는 현저히 작은 값이었고 15mm/s와 30mm/s의 이동 속도에서 모두 비슷한 크기의 오차값을 나타내었다. 4. 개발된 시스템의 속도별 반복정밀도 실험 결과 측정위치에서의 반복에 의한 정지 위치 오차는 전 구간에서 0.02mm 이내로 나타났고, 이동 평판의 이동속도가 15mm/s였을 경우에는 이동 회수 30회, 이동 거리 60mm일 때 최대 편차 0.019mm를 나타냈으며 이동속도가 30mm/s일 경우에는 이동 회수 40회, 이동거리 20mm에서 0.02mm의 최대 편차를 나타내었다. 5. 5개의 알루미늄 조각의 크기를 시스템으로 측정한 결과 측정값의 최대 편차는 0.08mm였다. 이 값은 시스템의 허용오차인 0.17mm의 50% 수준으로 시스템은 대상물의 크기 측정에 적당하다고 사료되었다. 6. 절단된 수삼의 초음파 전달속도는 평균 396.4m/s였다.를 축열재로 사용할 경우 재생기를 반으로 나누어서 가열부 쪽에 철선을, 냉각부 쪽에 철망을 삽입한 것이 반대로 삽입한 것보다 재생기 양단의 온도차는 높게 나타났고, 재생기 양단의 압력 차는 낮게 나타났다. 재생기 축열재로서 철망-철선을 사용할 경우 철선-철망 ø1.2-150이 전열 표면적은 작으나 재생기 양단의 온도차가 가장 큰 것으로 나타났으며 재생기 양단의 압력 차는 가장 낮게 나타나 공시 철망- 철선 혼합 축열재중 가장 우수함을 알 수 있다. 4. 철망사이에 철선을 삽입한 축열재의 경우, 철망사이에 삽입한 철선의 직경이 큰 것이 철선의 직경이 작은 것보다 재생기의 양단의 온도차가 높게 나타났고 재생기 양단의 압력차는 작게 나타났다. 그러므로 철망사이에 철선을 삽입한 것 중 성능이 우수한 것은 150-ø2. 0-150으로 나타났다. 5. 실험한 재생기 축열재들 중에서 성능이 우수한 것들을 비교한 결과, 복합 철선 ø1.2-1 50이 가장 성능이 좋은 것으로 나타났다.적외선.열풍 복합건조방법이 높게 나타나 이것은 곡물 표면에 원적외선 방사에의한 복사열이 전달되어 열장해를 받았기 때문으로 판단되며, 금후 더 연구하여 적정 열풍온도 및 방사체 크기를 구명해야 할 것이다.으로 보여진다 따라서 옻나무 유래 F는 포유동물의 생식기능에 중요하게 작용하는 것으로 사료된다.된다.정량 분석한 결과이다. 시편의 조성은 33.6 at% U, 66.4 at% O의 결과를 얻었다. 산화물 핵연료의 표면 관찰 및 정량 분석 시험시 시편 표면을 전도성 물질로 증착시키지 않고, Silver Paint 에 시편을 접착하는 방법으로도 만족한 시험 결과를 얻을 수 있었다.째, 회복기 중에 일어나는 입자들의 유입은 자기폭풍의 지속시간을 연장시키는 경향을 보이며 큰 자기폭풍일수

  • PDF

Preparation and Thermal Performance Evaluation of Heat Storage paint with MPCM for Reducing Urban Heat Island Effect (도시 열섬현상 저감을 위한 MPCM 적용 축열도료 제조 및 열적성능 평가)

  • Jeong, Su-Gwang;Kang, Yujin;Wi, Seunghwan;Chang, Seong Jin;Kim, Sumin
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.17-24
    • /
    • 2015
  • The formation of heat islands causes high energy demand for space cooling and peak cooling loads in conditioned buildings. High-temperature fluctuations on a building roof may cause mechanical stress and increase surface deterioration. Thermal energy storage (TES) systems using microencapsulated phase-change materials (MPCMs) have been recognized as one of the most advanced energy technologies for enhancing the energy efficiency and sustainability of buildings. In this study, we prepared MPCM/paint composites for mitigating the heat island effect and reducing peak temperature. In addition, we carried out thermal and physical analysis of prepared MPCM composite samples by means of SEM, FTIR spectroscopy, DSC, and TGA. Further, we evaluated the dynamic heat transfer performance of heat-storage tiles painted with 10 g of heat-storage paint. From the obtained results, we deduced that MPCM/hydrophilic paint composites are more applicable to various fields, including the building sector, than MPCM/hydrophobic paint composites. On the basis of SEM and FTIR spectroscopy results, we concluded that materials with hydrophilic properties are more compatible with MPCMs than those with hydrophobic properties. In addition, DSC analysis results revealed that MPCM/hydrophilic paint composites have better compatibility, higher latent heat capacity, and better thermal properties than other composites. TGA results showed that hydrophilic-paint-based composites have higher thermal durability than hydrophobic-paint-based composites. Finally, a lot of MPCM-loaded heat-storage tiles showed lower peak temperatures at all measurement positions.

Studies on the Heat Storage Using the Hydration/Dehydration of the Calcined Dolomite (소성 Dolomite의 수화 및 탈수반응을 이용한 축열에 관한 연구)

  • Lee, Soo-Kag;Lee, Young-Sei;Kim, Jong-Shik
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.507-515
    • /
    • 1992
  • This study was carried out to investigate the heat-storage/-release characteristics of the thermochemical reaction of the calcined dolomite and steam system for the application of regenerative heat exchangers with the packed bed shape experimental apparatus. The experimental data were obtained at the following conditions ; the hydration temperature was $150-400^{\circ}C$, the dehydration temperature was $700-800^{\circ}C$ and the steam mass flow rates were 294, 430 and 567 g/hr. In the present study, it was found that MgO of the calcined dolomite was not hydrated during the hydration process under the studied experimental conditions. Therefore, MgO of the calcined dolomite can be regard as an inert material. Because the reaction was proceeded from the packed bed input to packed bed output and from wall to center, it could be thought that the rate determining step is not the reaction itself but the heat transfer.

  • PDF