• 제목/요약/키워드: 축압궤실험

검색결과 5건 처리시간 0.022초

경량화용 혼성 알루미늄 CFRP 사각튜브의 축 압궤특성 (Axial Collapse Characteristics of Combined Aluminum CFRP Square Tubes for Light-Weight)

  • 이길성;차천석;정진오;양인영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.110-113
    • /
    • 2004
  • Aluminum and CFRP tube is light-weight material representatively but collapse mechanism is different under axial loading. Aluminum tube absorbs energy by stable plastic deformation under axialloading. While CFRP(Carbon Fiber Reinforced Plastics)tube absorb synergy by unstable brittle failure but its specific strength and stiffness is higher than that of aluminum tube. In this study, for complement of detect and synergy effect by combination with the advantages of each member, the axialcollapsetests were performed for combined aluminum CFRP tubes which are composed of aluminum tubes wrapped with CFRP out side aluminum square tubes. Collapsecharacteristics were analyzed for combined square tubes which have different CFRP orientation angle and thickness. Test results were compared with that of aluminum tubes and CFRP tubes.

  • PDF

경량화용 Al/CFRP원형 부재의 축 압궤거동에 관한 연구 (A Study on the Axial Crushing Behavior of Aluminum Cm Circular Members for light-weight)

  • 이길성;차천석;양인영
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.50-56
    • /
    • 2005
  • Aluminum member absorbs energy by stable plastic deformation under axial loading. While CFRP(Carbon Fiber Reinforced Plastics) member absorbs energy by unstable brittle failure but its specific strength and stiffness is higher than those of aluminum member. In this study, for complement of detects and synergy effect by combination with the advantages of each member, the axial collapse tests were performed for aluminum CFRP members which are composed of aluminum members wrapped with CFRP outside aluminum circular members. Based on the respective collapse characteristics of aluminum and CFRP members, crushing behavior and energy absorption characteristics were analyzed for aluminum CRRP members which have different CFRP fiber orientation angle and thickness Test results showed that aluminum CFRP members supplemented the unstable brittle failure of CFRP members due to ductile nature of inner aluminum members. It turned out that the CFRP fiber orientation angle and thickness influence energy absorption capability together with the collapse mode of the members.

차체구조부재용 알루미늄 CFRP 혼성사각부재의 축 압궤 특성 (Axial Collapse Characteristics of Aluminum CFRP Compound Square Members for Vehicle Structural Members)

  • 이길성;차천석;편석범;양인영;심재기
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1329-1335
    • /
    • 2005
  • An aluminum or CFRP (Carbon Fiber ReinfDrced Plastics)is representative one of light-weight materials but its axial collapse mechanism is different from each other. The aluminum member absorbs energy by stable plastic deformation, while the CFRP member absorbs energy by unstable brittle failure with higher specific strength and stiffness than those in the aluminum member. In an attempt to achieve a synergy effect by combining the two members, aluminum CFRP compound square members were manufactured, which are composed of aluminum members wrapped with CFRP outside aluminum square members with different fiber orientation angle and thickness of CFRP, and axial collapse tests were performed fur the members. The axial collapse characteristics of the compound members were analyzed and compared with those of the respective aluminum members and CFRP members. Test results showed that the collapse of the aluminum CFRP compound member complemented unstable brittle failure of the CFRP member due to ductile characteristics of the inner aluminum member. The collapse modes were categorized into four modes under the iuluence of the fiber orientation angle and thickness of CFRP. The absorbed energy Per unit mass, which is in the light-weight aspect was higher in the aluminum CFRP compound member than that in the aluminum member and the CFRP member alone.

차체구조용 박육단면부재의 단면형상변화에 따른 축압궤 특성에 관한 연구 (A Study on the Axial Collapse Characteristics of Thin-Walled Members for Vehicles on the Variation of Section Shapes)

  • 이길성;백경윤;차천석;정진오;양인영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1549-1552
    • /
    • 2003
  • The front-end side members of automobiles absorb most of the energy in a front-end collision. The front-end side members are required to have a high stiffness together with easiness to collapse sequentially to absorb more impact energy. The axial static collapse test (5mm/mim) was conducted by using UTM with respect to the single hat shaped section members which are the standard section shape of the spot welded section members, to the single cap shaped section members, to the double cap shaped section members and to the double hat shaped section members whose section shape are changed in order to give more stiffness. As a result of test, the energy absorbing characteristic was analyzed for different section shapes. That is, it was analyzed that the change of section shape influenced the absorbing energy, the mean collapse load and the maximum collapse load, and that the relation between the change of section shape and the collapse mode.

  • PDF

단면형상이 다른 Al/CFRP 혼성박육부재의 축압궤특성 (Axial Collapse Characteristics of Aluminum/Carbon Fiber Reinforced Plastic Composite Thin-Walled Members with Different Section Shapes)

  • 황우채;이길성;차천석;김지훈;나승우;양인영
    • 대한기계학회논문집A
    • /
    • 제38권9호
    • /
    • pp.959-965
    • /
    • 2014
  • 본 연구에서는 Al/CFRP 혼성 구조부재가 승용차용 사이드부재에 사용될 것을 상정하여 Al/CFRP 혼성 구조부재의 단면형상의 변화, 최외각층의 변화가 압궤 특성에 어떠한 영향을 미치는가를 실험적으로 고찰하여 수송기계의 경량화를 위한 사이드부재로 사용될 수 있는 설계 데이터를 얻고자 하였다. 실험결과 다음과 같은 결론을 얻었다. 최외층각이 $0^{\circ}$로 적층된 원형 Al/CFRP 혼성 충격 흡수부재가 사각 Al/CFRP 혼성 충격 흡수부재 보다 52,9%, 모자형 Al/CFRP 혼성 충격 흡수부재 보다 49.93% 높게 나타났으며, 최외층각이 $90^{\circ}$로 적층된 경우 원형 Al/CFRP 혼성 충격 흡수부재 사각 Al/CFRP 혼성 충격 흡수부재 보다 50.49%, 모자형 Al/CFRP 혼성 충격 흡수부재 보다 49.2% 높게 나타났다.