• Title/Summary/Keyword: 축방향 변형

Search Result 283, Processing Time 0.025 seconds

Evaluation of Characteristics of Shear Strength and Poisso's Ratio through Triaxial and Bender Element Tests (벤더엘리먼트와 삼축시험을 통한 모래의 전단강도 및 포아송비 특성 규명)

  • Yoo, Jin-Kwon;Park, Du-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.67-75
    • /
    • 2014
  • In this paper, isotropically consolidated drained triaxial compression test device installed with bender elements is used to measure stress, stain, and shear wave velocity, from which the characteristics of shear strength and Poisson'ratio are investigated. The results show that there is a unique relationship between maximum shear modulus determined from shear wave velocity and effective vertical stress at failure, which is defined as the sum of vertical and radial stresses at failure. The correlation is very useful since it is possible to predict the shear strength and internal friction angle from shear wave velocity. In addition, Poisson's ratio is determined from measured axial and volumetric strains. It is demonstrated that the range of measured Poisson's ratio is between 0.15 and 0.6, and increases with the axial strain. The ratios at axial strains smaller than 0.2% corresponds to the range recommended in design codes, which are approximately from 0.3~0.35. However, at axial strains exceeding 1%, the measured ratios are between 0.5 and 0.6. It is therefore shown that use of ratios commonly used in practice will result in pronounced underestimation at large strains.

An analytical Study for the Development of Highly Elastic Material applicable for Joint in Modular Pavement (모듈러 포장에 적용가능한 고탄성 연결재료 개발을 위한 해석적 연구)

  • Lee, Young-Ho;Kang, Su-Tae;Song, Jae-Joon;Lee, Sang-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5947-5955
    • /
    • 2013
  • This study was intended to estimate the axial deformation of joint between pavement modules in the rapid-constructible modular pavement system, and to investigate the applicability of two-phase composites for a joint material, which was composed of cement paste, epoxy, or polyurethane as a matrix and sand as particles. A case which had supports under the pavement module as well as a case which the module was put on roadbed directly were considered in FEM analysis for the axial deformation. The effect of self-weight, live load, thermal change, and drying shrinkage were estimated and the thermal change was found to cause the largest deformation compared to the others. Deformation capacity of two-phase composites was predicted using the modified shear-lag model. In the analytical results for the elastic modulus and maximum tensile strain with different volume fractions of sand, 20~30 % replacement of sand was revealed to satisfy the required strain capacity with economy when if the width of joint was designed to be 15~20 mm.

Geological Structures of the Hadong Northern Anorthosite Complex and its surrounding Area in the Jirisan Province, Yeongnam Massif, Korea (영남육괴 지리산지구에서 하동 북부 회장암복합체와 그 주변지역의 지질구조)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.287-307
    • /
    • 2012
  • The study area, which is located in the southeastern part of the Jirisan province of the Yeongnam massif, Korea, consists mainly of the Precambrian Hadong northern anorthosite complex (HNAC) and the Jirisan metamorphic rock complex (JMRC) and the Mesozoic granitoids which intrude them. Its tectonic frame is built into NS trend, unlike the general NE-trending tectonic frame of Korean Peninsula. This paper researched the structural characteristics at each deformation phase to clarify the geological structures associated with the NS-trending tectonic frame which was built in the HNAC and JMRC. The result indicates that the geological structures of this area were formed at least through three phases of deformation. (1) The $D_1$ deformation formed the $F_1$ sheath or "A"-type folds in the HNAC and JMRC, and the $S_{0-1}$ composite foliation and the $S_1$ foliation and the $D_1$ ductile shear zone which are (sub)parallel to the axial plane of $F_1$ fold, and the $L_1$ stretching lineation which is parallel to the $F_1$ fold axis owing to the large-scale top-to-the SE shearing on the $S_0$ foliation. (2) The $D_2$ deformation (re)folded the $D_1$ structural elements under the EW-trending tectonic compression environment, and formed the NS-trending $F_2$ open, tight, isoclinal, intrafolial folds with the $S_{0-1-2}$ composite foliation and the $S_2$ foliation and the $D_2$ ductile shear zone with S-C-C' structure and the $L_2$ stretching lineation which is (sub)parallel to the axial plane of $F_2$ fold. The extensive $D_2$ ductile shear zone (Hadong shear zone) of NS trend was persistently developed along the eastern boundary of HNAC and JMRC which would be to the limb of $F_2$ fold on a geological map scale. The Hadong shear zone is no less than 1.4 km width, and was formed in the mylonitization process which produced the mylonitic structure and the stretching lineation with the reduction of grain size during the $F_2$ passive folding. (3) The $D_3$ deformation formed the EW-trending $F_3$ kink or open fold under the NS-trending tectonic compression environment and partially rearranged the NS-trending pre-$D_3$ structural elements into (E)NE or (W)NW direction. The regional trend of $D_1$ tectonic frame before the $D_2$ deformation would be NE-SW unlike the present, and the NS-trending tectonic frame in the HNAC and JMRC like the present was formed by the rearrangement of the $D_1$ tectonic frame owing to the $F_2$ active and passive folding. Based on the main intrusion age of (N)NE-trending basic dyke in the study area, these three deformation events are interpreted to have occurred before the Late Paleozoic.

Three-Dimensional Vibration Analysis of Deep, Nonlinearly Tapered Rods and Beams with Circular Cross-Section (원형단면의 깊은 비선형 테이퍼 봉과 보의 3차원 진동해석)

  • 심현주;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.251-260
    • /
    • 2003
  • A three dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of deep, tapered rods and beams with circular cross section. Unlike conventional rod and beam theories, which are mathematically one-dimensional (1-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components u/sup r/, u/sub θ/ and u/sub z/, in the radial, circumferential, and axial directions, respectively, are taken to be sinusoidal in time, periodic in , and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the rods and beams are formulated, the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies of the rods and beams. Novel numerical results are tabulated for nine different tapered rods and beams with linear, quadratic, and cubic variations of radial thickness in the axial direction using the 3D theory. Comparisons are also made with results for linearly tapered beams from 1-D classical Euler-Bernoulli beam theory.

Neotectonic Crustal Deformation and Current Stress Field in the Korean Peninsula and Their Tectonic Implications: A Review (한반도 신기 지각변형과 현생 응력장 그리고 지구조적 의미: 논평)

  • Kim, Min-Cheol;Jung, Soohwan;Yoon, Sangwon;Jeong, Rae-Yoon;Song, Cheol Woo;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.169-193
    • /
    • 2016
  • In order to characterize the Neotectonic crustal deformation and current stress field in and around the Korean Peninsula and to interpret their tectonic implications, this paper synthetically analyzes the previous Quaternary fault and focal mechanism solution data and recent geotechnical in-situ stress data and examines the characteristics of crustal deformations and tectonic settings in and around East Asia after the Miocene. Most of the Quaternary fault outcrops in SE Korea occur along major inherited fault zones and show a NS-striking top-to-the-west thrust geometry, indicating that the faults were produced by local reactivation of appropriately oriented preexisting weaknesses under EW-trending pure compressional stress field. The focal mechanism solutions in and around the Korean Peninsula disclose that strike-slip faulting containing some reverse-slip component and reverse-slip faulting are significantly dominant on land and in sea area, respectively. The P-axes are horizontally clustered in ENE-WSW direction, whereas the T-axes are girdle-distributed in NNW direction. The geotechnical in-situ stress data in South Korea also indicate the ENE-trending maximum horizontal stress. The current crustal deformation in the Korean Peninsula is thus characterized by crustal contraction under regional ENE-WSW or E-W compression stress field. Based on the regional stress trajectories in and around East Asia, the current stress regime is interpreted to have resulted from the cooperation of westward shallow subduction of the Pacific Plate and collision of Indian and Eurasian continents, whereas the Philippine Sea plate have not a decisive effect on the stress-regime in the Korean Peninsula due to its high-angle subduction that resulted in dominant crust extension of the back-arc region. It is also interpreted that the Neotectonic crustal deformation and present-day tectonic setting of East Asia commenced with the change of the Pacific Plate motion during 5~3.2 Ma.

Numerical Analysis of ECC Uniaxial Tension Behavior (ECC의 1축 인장 거동 해석)

  • Kim, Yun-Yong;Lee, Bang-Yeon;Kwon, Seung-Hee;Kim, Jeong-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.917-920
    • /
    • 2008
  • ECC is a special kind of high performance cementititous composite which exhibits typically more than 2% tensile strain capacity by bridging microcracks at a crack section. Therefore, micromechanics should be adopted to obtain multiple cracking and strain hardening behavior. This paper propose a linear elastic analysis method to simulate the multiple cracking and strain hardening behavior of ECC. In an analysis, the stress-crack opening relation modified considering the orientation of fibers and the number of effective fibers is adopted. Furthermore, to account for uncertainty of materials and interface between materials, the randomness is assigned to the tensile strength(${\sigma}_{fci}$), elastic modulus($E_{ci}$), peak bridging stress(${\sigma}_{Bi}$) and crack opening at peak bridging stress(${\delta}_{Bi}$), initial stress at a crack section due to chemical bonding, (${\sigma}_{0i}$), and crack spacing(${\alpha}_cX_d$). Test results shows the number of cracking and stiffness of cracked section are important parameters and strain hardening behavior and maximum strain capacity can be simulated using the proposed method.

  • PDF

Shape Deformation Monitoring for VLBI Antenna Using Close-Range Photogrammetry and Total Least Squares (근접사진측량과 Total Least Squares를 활용한 VLBI 안테나 형상 변형 모니터링 방안 연구)

  • Kim, Hyuk Gil;Yun, Hong Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.99-107
    • /
    • 2016
  • In order to maintain the precise positioning accuracy of the VLBI system, the shape deformation found in antenna structure should be monitored. In fact, reduced the antenna gaining of an electromagnetic wave reception from the Quasar has been particularly expected due to the shape deformation of main reflector in VLBI antenna. Therefore, the importance of shape deformation monitoring for the main reflector has been significantly increased. The main reflector has come out as the high potential for deformation in the VLBI structure. The fact has led us to investigate the monitoring system for the main reflector based on the efficient algorithm in accordance with the close-range photogrammetry, which of expecting to be utilized as the continuous and automated monitoring system for the structure deformation in the near future. Ten fitting lines were estimated with the TLS for feature points of distributed in all directions from the main reflector. The resultant intersection point of estimated fitting lines was calculated by using the nearest point calculation algorithm, based on those non-intersection lines. Following to the intuitive basis for the time series analysis, the results was able to provide the calculation of numerical variation in the intersection point, which is represented in 3-axis,; that we are expecting to open the way for predicting a deformation rate as well as deformation direction

Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications (한반도 동남부 신생대 지각변형의 주요 특징과 지구조적 의의)

  • Son, Moon;Kim, Jong-Sun;Chong, Hye-Yoon;Lee, Yung-Hee;Kim, In-Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The southeastern Korean Peninsula has experienced crustal multi-deformations according to changes of global tectonic setting during the Cenozoic. Characteristic features of the crustal deformations in relation to major Cenozoic tectonic events are summarized as follows. (1) Collision of Indian and Eurasian continents and abrupt change of movement direction of the Pacific plate (50${\sim}$43 Ma): The collision of Indian and Eurasian continents caused the eastward extrusion of East Asia block as a trench-rollback, and then the movement direction of the Pacific plate was abruptly changed from NNW to WNW. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in southeastern Korea, which resultantly induced the passive intrusion of NS or NNE trending mafic dike swarm. (2) Opening of the East Sea (25${\sim}$16 Ma): The NS or NNW-SSE trending opening of the East Sea generated a dextral shear stress regime trending NNW-SSE along the eastern coast line of the Korean Peninsula. As a result, pull-apart basins were developed in right bending and overstepping parts along major dextral strike slip faults trending NNW-SSE in southeastern Korea. The basins can be divided into two types on the basis of geometry and kinematics: Parallelogram-shaped basin (rhombochasm) and wedged-shaped basin (sphenochasm), respectively. In those times, the basins and adjacent basement blocks experienced clockwise rotation and northwestward tilting contemporaneously, and the basins often experienced a kind of propagating rifting from NE toward SE. At about 17Ma, the Yonil Tectonic Line, which is the westernmost border fault of the Miocene crustal deformation in southeastern Korea, began to move as a major dextral strike slip fault. (3) Clockwise rotation of southeastern Japan Island (about 15 Ma): The collision of the Izu-Bonin Arc and southeastern Japan Island, as a result of northward movement of the Philippine sea-plate, induced the clockwise rotation of southeastern Japan Island. The event caused the NW-SE compression in the Korea Strait as a tectonic inversion, which resultantly tenninated the basin extension and caused local counterclockwise rotation of blocks in southeastern Korea. (4) E-W compression in the East Asia (after about 5 Ma): Decreasing subduction angle of the Pacific plate and eastward movement of the Amurian plate have constructed the-top-to-west thrusts and become a major cause for earthquakes in southeastern Korea until the present time.

  • PDF

Strength Prediction of Kraft Paperboard under Combined Stress (조합하중을 받는 Kraft 판지의 강도예측)

  • Lim, Won-Kyun;Jeong, Woo-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Based on the form of the Tsai-Hill criterion, a new failure criterion for anisotropic material subjected to combined stress is developed and demonstrated. It is capable of accurately calculating the strength of anisotropic materials. The generality and accuracy of the present failure criterion are illustrated by examination through the use of Kraft paperboards under various loading conditions. Compared to the Tsai-Hill theory, which is much too conservative at high levels of shear stress, the present criterion has a good agreement with the experimental data. It also has the ability to calculate the strength more simply, compared to the Tan-Cheng theory.

An Experimental Research on the Confinement Effect of Concrete Specimens with Spirals (나선근에 의한 콘크리트의 횡보강 효과에 관한 실험적 연구)

  • 김진근;박찬규
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.146-154
    • /
    • 1995
  • I n this paper, an experimental research was carried out to investigate the confinement effect of spiral reinforcements in concrete column specimens subjected to t.he concentric axial corn pressive loads. Main variables were the compressive strengths of concrete of 27.2, 62.4 and 81.2 MPa, and the spacings of spirals of 120, 60, 40, 30, 25 and 20mm. and the yield strengths of spir als of 451 and 1375MPa, respectively. For the same volumetric ratio and yield strength of spir als, it was shown that the strength increment of confined concrete was almost same regardless of the strength of unconfined concrete, however, the axial stram at maximum stress was decreas ed with increasing of the compressive strength of unconfined concrete.