• Title/Summary/Keyword: 축류 임펠러

Search Result 15, Processing Time 0.028 seconds

Shape Optimization of Impeller Blades for Bidirectional Axial Flow Pump (양방향 축류펌프용 임펠러 블레이드의 형상최적설계)

  • Baek, Seok Heum;Jung, Won Hyuk;Kang, Sangmo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1141-1150
    • /
    • 2012
  • This paper describes the shape optimization of impeller blades for an anti-heeling bidirectional axial flow pump used in ships. In general, a bidirectional axial pump has efficiency much lower than that of a classical unidirectional pump because of the symmetry of the blade type. In this study, by focusing on a pump impeller, the shape of the blades is redesigned to develop a bidirectional axial pump with higher efficiency. The commercial code employed in this simulation is CFX v.13. The CFD result of the pump torque, head, and hydraulic efficiency was compared. The orthogonal array (OA) and analysis of variance (ANOVA) techniques and surrogate-model-based optimization using orthogonal polynomials are employed to determine the main effects and their optimal design variables. According to the optimal design, we confirm an effective design variable for impeller blades and explain the optimal solution as well as the usefulness of satisfying the constraints of the pump torque and head.

A Study of Impeller's Design and CFD Analysis for Axial Flow Blood Pump (축류형 혈액펌프 개발을 위한 임펠러의 설계 및 해석에 대한 연구)

  • 임상필;김동욱
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.193-196
    • /
    • 2002
  • 완전인공심장은 크게 정상류형과 박동류형이 있다. 정상류형 인공심장중 축류형 혈액펌프는 기구가 간단하고 비용적형이기 때문에 소형화가 가능한 장점이 있지만, 가동중 발생하는 난류로 인해 용혈현상이 따른다는 단점이 있다. 이 용혈의 형성과정은 실제와 가까운 모의실험을 하지 않고서는 알 수가 없다. 따라서 본 연구에서는 모의 실험단계를 거치지 않고 유한요소해석에 의한 난류평가를 통하여 용혈지수가 가장 낮은 임펠러의 형상을 연구하였다. 난류해석 결과, vane매수가 적을 경우 상대적으로 용혈지수가 낮게 나타나는 것을 알 수 있었으나 vane매수가 적을 경우에는 일정한 출구유량을 얻기 위해 임펠러의 고속회전 이 필요하며 이에 따른 난류에너지가 발생, 높은 용혈지수가 예상되므로 본 논문에서는 vane매수 4매-6매 중 6000-7000rpm의 회전속도사이의 조건으로 설계된 임펠러의 모델이 적당한 것으로 예측할 수 있었다.

A Study of in-vitro Performances of the Intracardiac Axial Flow Pump (심장내 이식형 축류 혈액펌프의 in-vitro특성에 관한 연구)

  • 김동욱;삼전부호희
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.33-38
    • /
    • 1998
  • The intracardiac axial flow pump has been developed This device has several advantages: it fits well anatomically, its blood-contacting surface is small, and it is implanted as easily as an artificial heart valve replacement. The axial flow pump consists of an impeller and a motor, both of which are encased in a housing. Two types of impeller with 4 vanes and 6 vanes are used. Sealing of the motor shaft is achieved by means of a ferrofluidic seal. A flow of 5$\ell$/min was obtained at a differential pressure of 100mmHg with a motor speed of 7091rpm with the 4-vane impeller and 6402rpm with the 6-vane impeller. Sealing was kept against a pressure of 150mmHg at 7000rpm with the 4-vane impeller and 6402rpm with the 6-vane impeller. Sealing was kept against a pressure of 150mmHg at 7000rpm over 24 hours. The index of hemolysis was 0.056 with the 4-vane impeller and 0.214 with the 6-vane impeller. The intracardiac axial flow pump is a very promising circulatory support.

  • PDF

A Study on Hemolysis Characteristics of Intra-Cardiac Axial Flow Blood Pump (심장내 이식형 축류 혈액펌프 용혈특성에 관한 연구)

  • 김동욱
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.353-362
    • /
    • 2000
  • Minimization of hemolysis is one of the key factors for successful axial flow blood pumps. It is, however, difficult to estimate the hemolytic performance of axial flow blood pumps without experiments. Instead, the Computational Fluid Dynamics(CFD) analysis enables the prediction of hemolysis. Three-dimensional fluid dynamics of axial flow pumps with different impellers were analyzed using the CFD software, FLOTRAN. The turbulence model k-$\varepsilon$ was used. The changes in turbulent kinetic energy applied to each particle (red blood cell) flowing through the pumps were computed and displayed by the particle trace method (particle spacing of 10 msec). Also, the Reynolds shear stress was calculated from the turbulent kinetic energy. The shear stress was higher behind the impellers than elsewhere. The CFD analysis could predict in vitro results of hemolysis and also the areas where hemolysis occurred. The CFD analysis was found to be a useful tool for designing less hemolytic rotary blood pumps.

  • PDF

Development of Axial Flow Pump Design with Double-Circular-Arc Blade Profile (이중원호익형을 이용한 축류펌프의 설계)

  • 오재민;정명균;팽기석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.27-27
    • /
    • 2002
  • 본 연구에서는 상용코드 FLUENT를 통한 수치모사 결과를 바탕으로 개발한 이중 원호익형의 성능상관식을 축류펌프의 설계에 적용하여 보았다. 일반적으로 익형의 설계는 크게 두 단계를 거치게 된다. 먼저 반경방향의 평형과 설계조건을 만족하는 임펠러와 디퓨저의 입구와 출구의 속도 삼각형을 얻고, 다음으로 적당한 익형을 선택하여 기하학적 형상을 결정하는 과정으로 이루어져 있다.

  • PDF

SMART 냉각재순환펌프 개념설계

  • Park, Jin-Seok;Heo, Hyeong;Kim, Jong-In;Kim, Ji-Ho;Koo, Dae-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.885-890
    • /
    • 1998
  • SMART 냉각재순환펌프는 수직형 축류펌프로 분류되며 작동되는 환경의 특성상 캔드모터 펌프로 설계하였다. 냉각재순환점프의 전체 구조에 대한 개념설계를 수행하였으며 펌프의 주요부품인 회전측 집합체, 베어링 집합체, 전동기를 설계하였다. 베어링의 구조와 형상설계를 수행하였고 전동기는 농형유도 전동기로 설계하였으며 회전자의 슬롯에 대한 상세설계와 고정자의 슬롯에 대한 상세설계를 수행하였다. 앞으로 회전축의 동특성 해석, 임펠러의 캐비테이션 시험, 베어링의 내구성 시험, 펌프몸체의 응력해석을 수행할 예정이다.

  • PDF

Experimental Study for the Influence of Rotator Shape on the Rotating Flow in a Confined Cylinder (밀폐된 원통내부에서 회전체의 형상이 회전유동에 미치는 영향에 관한 실험적 연구)

  • Kim, Yu-Gon;Park, Cheon-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.675-684
    • /
    • 2002
  • Two-dimensional, angle-resolved LDV(Laser Doppler Velocimetry) measurements of the turbulent rotating flow field in a confined cylinder have been performed. The configurations of interest are flows between a rotating upper disk with a rod attached by a disk or impeller($\theta$ = 45$^{\circ}$, 90$^{\circ}$) and a stationary lower disk in a confined cylinder. The mean flow velocity as well as the turbulent intensity of the flow field have been measured. The results show that the flow is strongly dependent on the position of the impellers or the disk, negligibly affected by the Reynolds number in turbulent flow. It is observed that the mixing effect of the axial flow impeller($\theta$ = 45$^{\circ}$) is better than that of the radial flow impeller($\theta$ = 90$^{\circ}$) or a disk.

Design and Flow Phenomenon of Pump and Blower (펌프${\cdot}$송풍기의 설계와 유동현상)

  • Cho, King Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.17-30
    • /
    • 2002
  • The design method of turbomachinery has been developed highly. But some geometric dimensions have been determined from the empirical view points. In designing the inlet outer diameter of pump impeller and the hub ratio of blower, satisfactory theoretical grounds have not been presented till now. In the paper, these points are discussed and the method of increasing pump and blower efficiencies are also discussed on the basis of experimental and computational results of flow analysis. Further, the effects of tip clearance of rotor on its efficiency and the interference of rotor and stator blade rows are discussed and some ideas to estimate their effects are presented.

  • PDF

Performance of an Axial Turbo Fan by the Revision of Impeller Pitch Angle (피치각 수정에 따른 축류식 터보팬 성능 변화에 관한 연구)

  • Kang Seok-Youn;Lee Tae-Gu;Ryu In-Keun;Lee Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.268-276
    • /
    • 2005
  • The aim of this paper is to suggest one efficient method for the various requirements of performance during the process designing and producing an impeller. The study considers that the revisions of a pitch angle of an impeller at an axial turbo fan affect an air flow rates and a static pressure rise. The axial turbo fan specified with the 250 Pa maximum static pressure and 1300 CMH fan air flow rates was tested and analyzed by CFD. The Numerical results show that the air flow rates are calculated to 1,175 CMH, 1,223 CMH, 1,270 CMH, 1,340 CMH and 800 CMH in cases that the pitch angles are $44^{\circ},\;49^{\circ},\;54^{\circ},\;59^{\circ},\;and\;64^{\circ}$ respectively. Also the static pressure rises are shown to 108 Pa, 122Pa, 141 Pa, 188 Pa and 63 Pa at the same cases. The air flow rate is increased linearly according to the changes of the pitch angle from $44^{\circ}\;to\;59^{\circ}$ and the maximum air flow rate passing the impeller is increased to $13\%$ over at the case of $59^{\circ}$ pitch angle compared with the reference case of $54^{\circ}$ pitch angle. The static pressure rise is increased linearly according to the changes of the pitch angle from $44^{\circ}\;to\;54^{\circ}$, too. The static pressure rise at the $59^{\circ}$ pitch angle is increased to $33\%$ over compared with the $54^{\circ}$ pitch angle. The result shows that the revisions of pitch angle make the static pressure rise increase widely. However the air flow rates and the static pressure rise at the $64^{\circ}$ pitch angle are suddenly decreased because of over-changed pitch angle.