• Title/Summary/Keyword: 축류 싸이클론

Search Result 2, Processing Time 0.02 seconds

Pre-study for the improvement of air filtration performance in the air handling unit of subway station (도시철도 지하역사 공기조화기의 미세먼지 저감성능 개선을 위한 사전연구)

  • Kang, Joong-Goo;Shin, Chang-Heon;Bae, Sung-Joon;Kwon, Soon-Bark;Kim, Se-Young;Han, Seok-Yoon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.541-545
    • /
    • 2008
  • Particulate matter (PM) is one of the major indoor air pollutants especially in the subway station in Korea. In order to remove PM in the subway station, several kinds of PM removal system such as roll-filter, auto-washable air filter, demister, and electrostatic precipitator re used in the air handling unit (AHU) of subway station. However, those systems are faced to operation and maintenance problems since the filter-regeneration unit consisting of electrical or water jet parts is malfunctioned due to the high load of particulates and the filter material needs periodic replacement. In this study, we surveyed the particle removal systems in order to develop the new system of particle removing can be adopted in the current AHU of subway station.

  • PDF

CFD Analysis of Axial Flow Cyclone Separator for Subway Station HVAC System (지하역사 공기조화기에 적용 가능한 미세먼지 제거용 사이클론의 수치해석적 연구)

  • Kim, Jin-Kwan;Kim, Ho-Joong;Lee, Myung-Jun;Kim, Tae-Sung;Kwon, Soon-Bark
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.546-550
    • /
    • 2008
  • In this study, 3-dimensional Computational Fluid Dynamics (CFD) analysis was induced to simulate air flow and particle motion in the axial flow cyclone separator. The commercialized CFD code FLUENT was used to visualize pressure drop and particle collection efficiency inside the cyclone. We simulated 4 cyclone models with different shape of vane, such as turning angle or shape of cross section. For the air flow simulation, we calculated the flow field using standard ${\kappa}-{\varepsilon}$ turbulence viscous model. Each model was simulated with different inlet or outlet boundary conditions. Our major concern for the flow filed simulation was pressure drop across the cyclone. For the particle trajectory simulation, we adopted Euler-Lagrangian approach to track particle motion from inlet to outlet of the cyclone. Particle collection efficiencies of various conditions are calculated by number based collection efficiency. The result showed that the rotation angle of the vane plays major roll to the pressure drop. But the smaller rotation angle of vane causes particle collection efficiency difference with different inlet position.

  • PDF