본 논문에서는 입력의 자동화 및 교육을 위한 문자 익히기 시스템을 위하여 자소의 특징 추출과 유사도 함수를 정의하여 한글에 대한 미적평가를 수행하였다. 이를 위해 한글 문자의 자소에 대한 특징 추출 및 유사도 함수를 정의 한 후 표준 문자와 입력 문자가 얼마나 유사한지를 평가하는 방법을 제안하였다. 표준 문자와 입력 문자의 획에 대한 특징 추출 및 유사도 함수를 정의하였으며, 다양한 입력 문자 패턴에 대해 표준 문자 패턴과 얼마나 유사한지를 실험한 결과 예상한 값과 유사하게 일치하는 실험 결과를 얻을 수 있었다. 또한 일반 사람들의 미적 평가 결과와 제안한 방법의 실험 결과가 유사하게 일치한다는 결과도 얻을 수 있었다.
마르코프체인 시뮬레이션으로 추출한 점을 기반으로 커널 밀도함수를 구성하고 중요도 추출함수로 가정하였다. 크리깅 근사모델은 한계상태식 근방에서 상세히 구성되었다. 고장확률은 크리깅 근사모델에 대해 중요도 추출법을 수행하여 계산하였다. 커널 밀도함수가 한계상태식의 근방에서 더 많은 점을 추출할 수 있도록 기존의 방법을 개선하였다. 커널 밀도함수의 파라메터를 찾기 위한 안정적인 수치계산 방안이 제시된다. 크리깅 근사모델의 불확실성으로 인해 계산된 고장확률이 변경될 가능성을 계산하여, 크리깅 근사모델의 완성도를 평가하였다.
본 논문은 3차원 다각형 모델에서 특징 선을 추출하기 위한 방법에 대해 제안한다. 이산 곡면으로 이루어진 다각형 모델에서 특징 선을 추출하기 위하여 기존 방법에서는 전역적인 음함수 곡면 맞춤 기법(Implicit Surface Fitting)을 이용하여 모델의 꼭지점에서 곡률과 곡률 미분 값을 측정하였다. 이러한 방법은 다각형 모델의 꼭지점에서 음함수 곡면으로 정확하게 투영할 수 있도록 사용자의 정의 파라미타를 찾아야 하며, 특징 추출을 위한 많은 계산 시간을 요구한다. 그러나 제안 방법은 지역적 음함수 곡면 맞춤 기법을 이용하여 모델의 꼭지점에 근사된 곡면을 통해 미분 정보를 측정한다. 측정된 미분 정보를 통해 쉽게 각각의 모서리에서 제로-클로싱을 통해 특징 점을 추출하고, 곡률 방향을 따라 추출된 점들을 연결하여 특징 선을 생성한다. 여러 가지 다각형 모델에서 실험을 하였고 기존 방법보다 빠르며 높은 품질의 특징 선을 추출한다.
영상기반의 3자원 복원(reconstruction)에 대한 연구가 컴퓨터 성능의 발전과 다양한 영상기반의 복원 알고리즘의 연구로 인해 최근 좋은 결과를 보이고 있으나, 이는 얼굴영역과 같은 목적이 되는 영역이 각 입력영상으로부터 미리 정확하게 추출되어 있다고 가정하기 때문이다. 일반적으로 목적이 되는 영역을 추출하기 위해 차영상이 많이 이용되고 있지만 차영상은 잡음과 구멍(hole)과 같은 오 추출된 영역이 발생하기 때문에 목적이 되는 영역을 3차원으로 복원을 할 때 심각한 오류를 초래할 수 있다. 전경물체(목적이 되는 영역)을 정확하게 추출하기 위해 최근 그래프 컷(graph cut)을 이용한 방법이 다양하게 시도되고 있다. 그래프 컷은 데이터 항(data term)과 스무드 항(smooth term)으로 구성된 에너지 함수를 전역적으로 최소화하는 방법으로 여러 공학적 문제에서 좋은 결과를 보이고 있지만, 에너지 함수의 데이터 항을 설정할 때 필요한 사전정보를 자동으로 얻기가 어렵다. 스테레오 비전의 깊이 정보가 최근 전경 물체 추출을 위한 사전정보로 많이 이용되고 있고 그들의 실험환경에서는 좋은 결과를 보이지만, 3차원 얼굴 복원에서 얼굴의 대부분이 동질의 영역을 가지고 있기 때문에 깊이 정보를 구하기 어려워 정확한 사전정보를 구하기가 어렵다. 본 논문에서는 3차원 얼굴 복원을 효과적으로 하기 위한 그래프 컷 기반의 전경 물체 추출 방법을 제안한다. 에너지 함수의 데이터 항을 설정하기 위해 전경 물체에 대한 사전정보를 추출해야 하며, 이를 위해 차영상을 이용하여 대략적인 전경 물체 추출하고, 사전정보에 대한 오류를 줄이기 위해 잡음과 그림자 영역을 제거한다. 잡음과 그림자 영역을 제거하면 구멍이 발생하거나 실루엣이 손상되는 문제가 발생한다. 손상된 정보는 근접한 픽셀이 유사하지 않을 때 낮은 비용을 할당하는 에너지 함수의 스무드(smooth) 항에 의해 에지 정보를 기반으로 채워진다. 결론적으로 제안된 방법은 스무드 항과 대략적으로 설정된 데이터 항으로 구성된 에너지 함수를 그래프 컷으로 전역적으로 최소화함으로써 더욱 정확하게 목적이 되는 영역을 추출할 수 있다.
본 논문은 수리형태학적 분석을 통한 계단응답 추출 및 반복적 정칙화 방법을 이용한 점확산함수 추정 방법을 제안한다. 제안된 점확산함수 추정 기법은 입력 영상의 윤곽을 추출하기 위하여 캐니 에지 추출법을 사용하고, 윤곽에 대한 수리형태학적 분석을 위해서 Hit-or-Miss 변환을 통해 추정 조건을 만족하는 수평 및 수직 에지를 추출한다. 이렇게 추출된 에지들을 평탄화 및 정규화 시켜서 최적의 계단응답으로 만들고, 반복적 정칙화 방법을 통해 점확산함수를 추정하는 과정을 보인다. 또한 추정된 점확산함수를 사용하여 영상 복원한 결과를 보인다. 제안하는 점확산함수 추정 방법은 기계적 초점 렌즈를 사용하지 않는 디지털 자동초점 시스템에 적용하여 디지털 입력 장치의 부가가치를 높이는데 기여할 수 있다.
본 논문에서는 칼라 영상의 스케치 특징점을 추출하기 위해 퍼지신경회로망을 이용하는 방법에 대하여 설명한다. 이 신경회로망은 스케치 특징점 추출을 위한 퍼지 소속함수를 학습시킴으로써 적절한 국부 임계 치를 획득할 수 있도록 구성된다. 제안한 퍼지신경회로망의 입출력 소속함수는 표준영상으로부터 추출된 최적의 특징점 추출결과를 기반으로 구성하여 학습 데이타로 사용된다. 학습에 사용된 퍼지입력변수는 디지털 영상에서의 특징점 추출 시 국부영역 밝기를 잘 반영할 뿐만 아니라 특징점 추출성능이 매우 우수한 특성이 있으며, 이들 입력변수의 소속함수를 신경회로망으로 학습시킴으로써 매우 효과적이고 신속하게 스케치 특징점들을 추출할 수 있다. 실험결과, 소속함수로 학습된 신경회로망으로부터 얻어진 임계치를 사용한 특징점 추출이 다양한 영상에 대하여 매우 우수함을 보였다.
범용성을 지닌 문자 영역의 추출을 위해서는 대상화상에 의존하지 않는 정보를 활용 할 필요가 있다. 본 논문에서는 문장영역의 추출문제를 코스트 최소화 개념으로 접근 하여, 문자의 일반적 특징들을 종합적으로 고려하는 결과를 얻을 수 있는 범용성을 띤 영역추출방법을 제안한다. 구체적으로는, 문자의 형상과 배치에 관한 규칙성을 구하고자 하는 해에 대한 조건으로 설정, 그조건을 충족시키는 해가 최소값을 갖는 코스트 함수로 도입하고, 이 함수를 Simulated Annealing법에 의해 최소화하여 영역추출을 한다. 본 방법은 코스트 함수를 정의한다는 점에서 다른 방법과 확연한 차별성을 갖는다. 본 코스 트 함수를 이용한 영역 추출실험 결과, 실험가설에 부합되는 결론을 얻어 제안방법의 유효 성이 확증되었다.
본 논문은 확률적 확산 기법 및 확률모델을 이용하여 스테레오 영상간의 대응점을 추정하고, 영상의 배경으로부터 객체를 추출해 내는 연구를 다루고 있다. 스테레오 영상의 정합 및 객체 추출을 위하여 시차, 세그먼트, 라인, 및 오클루젼 필드를 Markov random field 모델로 정의하고, 확률적 에너지 최소화 방법을 이용하여 최적의 시차 필드 및 객체추출을 수행한다. 본 논문에서는 우선 이러한 다양한 필드간의 MRF 모델링 기법을 제안하고, 각 필드에 대한 에너지 함수를 정의한다. 그리고, 확률적 확산 기법을 이용하여 각 필드에 대하여 정의된 에너지 함수를 최소화함으로써, 최적의 시차필드 및 객체추출 결과를 구한다.
본 연구에서는 폰트를 식별할 수 있는 모듈을 제공하고 각 폰트마다 가지고있는 감성정보를 추출한다. 각 폰트의 특징 추출을 위해 세그먼트 폭 밀도함수를 사용한다. 각 폰트가 가지는 고유한 밀도함수로부터 폰트를 식별할 수 있다. 두 번째 모듈로서 각 폰트가 수반하는 감성정보를 추출한다. 각 폰트가 갖는 감성정보는 사용자기반의 감성데이타를 수집하고 이를 퍼지 멤버쉽을 이용하여 정의한다. 즉, 폰트정보만을 분석함으로서도 문서, E메일, 웹 문서 등에서 폰트가 수반하는 감성정보를 추출할 수 있다.
중요표본추출기법중에서도 층화표본추출법을 이용한 적응적 중요표본추출기법이 일반적으로 가장 합리적인 것으로 알려져 있다. 그러나 확률장 유한요소모형문제와 같이 기본 확률변수의 규모가 큰 경우에는 층화표본추출법에서 요구되는 기본적인 표본점의 규모가 급증하여 효율성이 떨어지게 된다. 본 연구에서는 이러한 한계성을 극복하기 위하여 층화표본추출에서 기본확률변수를 사용하는 대신에 기본확률변수들의 함수이며 새로운 확률변수인 응답값을 이용하는 방법을 개발하였다. 여기에서 응답값은 일반적인 함수형태로 표시되지 않으며, 한 번의 응답계산에 많은 계산량이 소요되므로 이러한 문제점을 해결하기 위하여 응답면식을 이용한 층화표본추출법을 개발하였다. 개발된 기법에서는 기본확률변수의 모의발생규모는 기본의 기본확률변수를 이용한 층화표본추출법에서 보다 증가하지만 매우 많은 계산량을 요구하는 실제응답해석규모는 응답면식을 이용함으로써 획기적으로 감소되었다. 특히 본 기법은 기본확률변수의 규모가 크고 대상한계상태의 파괴확률이 낮을수록 기존의 방법과 비교해 효율성이 증대되는 것으로 분석되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.