한국프랜차이즈산업은 1970년대 도입된 이후, 외식업, 도·소매업, 서비스업 등 광범위한 영역에 국민생활과 밀접한 지식기반서비스산업으로 고성장을 지속하고 있다. 이제 국내 프랜차이즈산업은 양적성장에서 질적 성장으로의 전환을 통한 새로운 도약을 준비해야 할 시기이다. 무엇보다도 중요한 것은 가맹본부와 가맹점 사업자 간의 신뢰구축을 위한 가맹본부와 가맹점사업자의 노력과 실천이다(Stanworth & Kaufmana, 1995). 가맹본부와 가맹점사업자간의 우호적이고 신뢰할 수 있는 관계(Relationship)야 말로 프랜차이즈에 대한 불신을 해소하고 건강한 프랜차이즈시스템을 유지할 수 있는 근간이기도 하다. 가맹사업을 하고자 하는 가맹본부는 프랜차이즈산업의 지속적인 성장과 발전을 위해서 가맹점창업의 성공에 많은 영향을 미치는 항목이 무엇인지를 파악해야 한다. 따라서, 가맹점 사업성과의 만족도와 가맹점 사업성공·실패에 미치는 가맹점의 선택속성이 무엇인지를 파악하고 업종별로 차이가 있다는 것을 밝히려는 연구의 목적이 있다. 본 연구는 가맹사업을 하고 있는 가맹본부나 예비 가맹본부 창업자들이 가맹점 모집뿐만 아니라 가맹점 지원시스템 구축력, 브랜드력, 가맹점의 상권 경쟁력, 교육·훈련 프로그램 수준, 가맹점사업자의 금융비용, 가맹점본부와 가맹점사업자와의 파트너쉽, 마케팅 믹스 관리능력(제품, 가격조건, 물류 및 배송서비스, 프로모션, 슈퍼바이징과 슈퍼바이저, 업무절차·과정, 물리적 증거)에 투자와 활동을 집중해야 가맹점의 성공가능성이 높아진다는 것을 시사하고 있다. 가맹점 예비창업자들이 우수한 가맹본부를 선택하기 위해 가장 크게 고려하는 사항은 가맹본부의 특성이다. 특히 가맹점에 대한 가맹본부의 지원은 가맹점의 사업성과와 만족도를 높이고 결과적으로 적극적인 추천이나 재 계약률을 높일 수 있다.
연구 목적: 본 연구의 목적은 임플란트 지대주 연결에 사용되는 기성품 나사와 맞춤형 나사의 풀림 토크를 비교하는 것이다. 연구 재료 및 방법: 세가지 임플란트 시스템에(Osstem, Astra, Zimmer) 대해 고정체와 지대주의 연결에 기성품 나사군(대조군)과 맞춤형 나사군(실험군)으로 총 6군(n = 6)으로 나누었다. 조임 토크조절은 디지털 토크 측정기를 이용하였으며 각 임플란트 제조사가 추천한 조임 토크 값을 적용하였다. 체결 10분 후 동일한 조임 토크를 다시 적용하고 5분 후에 풀림 토크력을 측정하였다. 이 과정을 10회 반복 측정하였다. 반복 하중 실험에서는 6개 군(n = 3)에 대해 체결 10분 후 2차 조임 토크를 적용하고 $30^{\circ}$ 경사로 50 N 하중으로 총 1,000,000번 반복 하중을 가하였다. 반복 하중 적용 이후 풀림 토크값을 측정하였다. 통계 방법으로는 10회 반복 측정에서 풀림 토크값의 차이를 비교하기 위해 repeated measures of ANOVA test (${\alpha}$=.05)를 사용하였고, 반복 하중 후 풀림 토크값의 차이를 비교하기 위해서 각 시스템별 Independant t-test로 통계 처리하였다. 결과: 모든 군에서 반복 횟수가 증가할수록 풀림 토크값이 유의성 있게 감소하는 것으로 나타났다(P<.05). 10회 반복 측정 실험에서는 세 종류의 임플란트에서 대조군(기성품나사)과 실험군(맞춤형 나사) 간에 풀림 토크값은 유의차가 없었다(P>.05). 반복 하중 실험에서 세가지 시스템에서 대조군과 실험군 간의 풀림 토크력은 유의한 차이가 없었다(P>.05). 결론: 반복 측정된 풀림력 검사와 반복 하중을 적용 후 풀림력 검사에서 맞춤형 나사와 기성품 나사의 풀림력은 유의한 차이가 없었다.
최근 딥러닝은 오디오, 텍스트 및 이미지 데이터와 같은 비 체계적인 데이터를 대상으로 다양한 추정, 분류 및 예측 문제에 사용 및 적용되고 있다. 특히, 의류산업에 적용될 경우 딥러닝 기법을 활용한 의류 인식, 의류 검색, 자동 제품 추천 등의 심층 학습을 기반으로 한 응용이 가능하다. 이 때의 핵심모형은 합성곱 신경망을 사용한 이미지 분류이다. 합성곱 신경망은 입력이 전달되고 출력에 도달하는 과정에서 가중치와 같은 매개 변수를 학습하는 뉴런으로 구성되고, 영상 분류에 가장 적합한 방법론으로 사용된다. 기존의 의류 이미지 분류 작업에서 대부분의 분류 모형은 의류 이미지 자체 또는 전문모델 착용 의류와 같이 통제된 상황에서 촬영되는 온라인 제품 이미지를 사용하여 학습을 수행한다. 하지만 본 연구에서는 통제되지 않은 상황에서 촬영되고 사람들의 움직임과 다양한 포즈가 포함된 스트릿 패션 이미지 또는 런웨이 이미지를 분류하려는 상황을 고려하여 분류 모형을 훈련시키는 효과적인 방법을 제안한다. 이동성을 포착하는 런웨이 의류 이미지로 모형을 학습시킴으로써 분류 모형의 다양한 쿼리 이미지에 대한 적응력을 높일 수 있다. 모형 학습 시 먼저 ImageNet 데이터셋을 사용하여 pre-training 과정을 거치고 본 연구를 위해 수집된 32 개 주요 패션 브랜드의 2426개 런웨이 이미지로 구성된 데이터셋을 사용하여 fine-tuning을 수행한다. 학습 과정의 일반화를 고려해 10번의 실험을 수행하고 제안된 모형은 최종 테스트에서 67.2 %의 정확도를 기록했다. 본 연구 모형은 쿼리 이미지가 런웨이 이미지, 제품 이미지 또는 스트릿 패션 이미지가 될 수 있는 다양한 분류 환경에 적용될 수 있다. 구체적으로는 패션 위크에서 모바일 어플리케이션 서비스를 통해 브랜드 검색을 용이하게 하는 서비스를 제공하거나, 패션 잡지사의 편집 작업에 사용되어 브랜드나 스타일을 분류하고 라벨을 붙일 수 있으며, 온라인 쇼핑몰에서 아이템 정보를 제공하거나 유사한 아이템을 추천하는 등의 다양한 목적에 적용될 수 있다.
스마트폰이 널리 보급되고 현대인들의 생활 속에 깊이 자리 잡으면서, 스마트폰에서 수집된 다종 데이터를 바탕으로 사용자 개인의 행동을 인식하고자 하는 연구가 활발히 진행되고 있다. 그러나 타인과의 상호작용 행동 인식에 대한 연구는 아직까지 상대적으로 미진하였다. 기존 상호작용 행동 인식 연구에서는 오디오, 블루투스, 와이파이 등의 데이터를 사용하였으나, 이들은 사용자 사생활 침해 가능성이 높으며 단시간 내에 충분한 양의 데이터를 수집하기 어렵다는 한계가 있다. 반면 가속도, 자기장, 자이로스코프 등의 물리 센서의 경우 사생활 침해 가능성이 낮으며 단시간 내에 충분한 양의 데이터를 수집할 수 있다. 본 연구에서는 이러한 점에 주목하여, 스마트폰 상의 다종 물리 센서 데이터만을 활용, 딥러닝 모델에 기반을 둔 사용자의 동행 상태 인식 방법론을 제안한다. 사용자의 동행 여부 및 대화 여부를 분류하는 동행 상태 분류 모델은 컨볼루션 신경망과 장단기 기억 순환 신경망이 혼합된 구조를 지닌다. 먼저 스마트폰의 다종 물리 센서에서 수집한 데이터에 존재하는 타임 스태프의 차이를 상쇄하고, 정규화를 수행하여 시간에 따른 시퀀스 데이터 형태로 변환함으로써 동행 상태분류 모델의 입력 데이터를 생성한다. 이는 컨볼루션 신경망에 입력되며, 데이터의 시간적 국부 의존성이 반영된 요인 지도를 출력한다. 장단기 기억 순환 신경망은 요인 지도를 입력받아 시간에 따른 순차적 연관 관계를 학습하며, 동행 상태 분류를 위한 요인을 추출하고 소프트맥스 분류기에서 이에 기반한 최종적인 분류를 수행한다. 자체 제작한 스마트폰 애플리케이션을 배포하여 실험 데이터를 수집하였으며, 이를 활용하여 제안한 방법론을 평가하였다. 최적의 파라미터를 설정하여 동행 상태 분류 모델을 학습하고 평가한 결과, 동행 여부와 대화 여부를 각각 98.74%, 98.83%의 높은 정확도로 분류하였다.
"전지구기후서비스체계" (GFCS)는 2009년 제3차 세계기후회의에서 기후변화 대응 취약 국가와 소외계층에 대해 보다 효율적인 기후정보를 제공하기 위한 전지구차원의 서비스 제공체계 구축 필요성에 대한 공감을 바탕으로 제안되어, 현재 세계기싱기구를 중심으로 관련 UN 및 국제기구간 공조를 통해 향후 약 10년 동안에 걸쳐 이를 이행하기 위한 노력을 기울일 예정이다. GFCS는 과학적 기후정보와 기후예측을 기후변화 적응과 기후위기관리를 상호 연계할 수 있는 기후서비스 개발을 주도하게 된다. GFCS의 기본구조는 5개 주요 요소로 구성되어 있는데, 이에는 관측/모니터링, 연구/모형/예측, 기후서비스정보시스템 및 사용자인터페이스 플랫폼과 함께 이들 모두를 포괄하는 역량개발이 포함되어 있다. 현재 GFCS의 편익분야 중 자연재해경감, 수자원, 보건 분야와 함께 농업/식량안보분야가 4대 우선순위에 포함되어 있는데, WMO의 농업기상위원회(CAgM)은 동분야에 대한 GFCS의 효율적 이행을 지원하기 위해 GFCS의 5개 요소별로 이를 보완하기 위한 전구차원 선도적 협력방안(GIAM)을 제안 추진하고 있다. GIAM의 취지는 기존의 기후서비스체계의 개별적 서비스 구조를 통합하거나 미흡한 부분을 보완하는 방법 등 최소한의 추가적인 자원 투입으로 최대 시너지효과를 도출하는데 중점을 두고 있다. 관측분야는 전구생물계절관측협의체 구축, 연구분야는 지역/전구 농림기상 파일롯프로젝트 도출, 기후서비스분야는 기존 농업기상웹서버인 WAMIS의 지역 및 기능 확대, 사용자인터페이스분야는 기존 사이버농업기상협의체를 보완하기 위한 전구 농림기상학술협의체 구축, 그리고 역량개발분야는 전구농림기상교육훈련센터 구축 등이 추진 중에 있으며, 이들간의 유기적인 연동 지원을 위한 조정기구와 지원사무국의 설립도 기상청에 의해 가시화되고 있으며, 효율적인 운영을 위한 새로운 거버넌스도 미국 조지메이슨대를 중심으로 구축 중에 있다. 한편 GIAM의 성공적인 이행을 위해서는 전산자원 인프라 구축이 선행되어야 함으로 현재 WAMIS를 지원하기 위해서 세계기상기구 정보시스템(WIS)의 자료수집/생산센터(DCPC-WAMIS) 구축 및 회원국간 전산자원공유를 위한 클라우드 및 그리드 환경 구축도 기상청과 KISTI/부경대 등의 협조를 얻어 추진 중에 있다, GIAM의 궁극적인 목표의 하나는 차세대 기후변화 대응 농림기상전문가의 양성에 있는데 이를 구현하는 방안으로 회원국의 추천을 받은 후보자를 전구농림기상 교육훈련센터 대학원 과정에 학비/수업료 면제조건으로 입학시킨 후, 지역 파일롯프로젝트에 연구원으로 참여, 이를 통해 생활비 등 지원을 받는 한편 농림기상 학술협의체 회원 활동, 국내외 실무그룹 활동 등을 통해 농림기상분야 국제전문가로 양성함으로써 향후 회원국 농업/식량안보분야 기후변화 대응에 절대적으로 필요한 핵심정책연구 담당자로서의 역할을 기대할 수 있을 것이다.
기업의 경쟁력 확보를 위해 판별 알고리즘을 활용한 의사결정 역량제고가 필요하다. 하지만 대부분 특정 문제영역에는 적합한 판별 알고리즘이 어떤 것인지에 대한 지식은 많지 않아 대부분 시행착오 형식으로 최적 알고리즘을 탐색한다. 즉, 데이터셋의 특성에 따라 어떠한 분류알고리즘을 채택하는 것이 적합한지를 판단하는 것은 전문성과 노력이 소요되는 과업이었다. 이는 메타특징(Meta-Feature)으로 불리는 데이터셋의 특성과 판별 알고리즘 성능과의 연관성에 대한 연구가 아직 충분히 이루어지지 않았기 때문이며, 더구나 다중 클래스(Multi-Class)의 특성을 반영하는 메타특징에 대한 연구 또한 거의 이루어진 바 없다. 이에 본 연구의 목적은 다중 클래스 데이터셋의 메타특징이 판별 알고리즘의 성능에 유의한 영향을 미치는지에 대한 실증 분석을 하는 것이다. 이를 위해 본 연구에서는 다중 클래스 데이터셋의 메타특징을 데이터셋의 구조와 데이터셋의 복잡도라는 두 요인으로 분류하고, 그 안에서 총 7가지 대표 메타특징을 선택하였다. 또한, 본 연구에서는 기존 연구에서 사용하던 IR(Imbalanced Ratio) 대신 시장집중도 측정 지표인 허핀달-허쉬만 지수(Herfindahl-Hirschman Index, HHI)를 메타특징에 포함하였으며, 역ReLU 실루엣 점수(Reverse ReLU Silhouette Score)도 새롭게 제안하였다. UCI Machine Learning Repository에서 제공하는 복수의 벤치마크 데이터셋으로 다양한 변환 데이터셋을 생성한 후에 대표적인 여러 판별 알고리즘에 적용하여 성능 비교 및 가설 검증을 수행하였다. 그 결과 대부분의 메타특징과 판별 성능 사이의 유의한 관련성이 확인되었으며, 일부 예외적인 부분에 대한 고찰을 하였다. 본 연구의 실험 결과는 향후 메타특징에 따른 분류알고리즘 추천 시스템에 활용할 것이다.
목적: 이 실험의 목적은 전치부 임플란트에 적용되는 지르코니아 지대주의 적절한 축벽의 두께를 평가하는 것이었다. 재료 및 방법: 시편들은 4가지의 서로 다른 두께로 제작되었으며, 일정하게 제작하고자 CAD/CAM 시스템을 이용하여 소결전 지르코니아 블록을 가공한 후 소결하였다. 가공된 시편들은 두께에 따라 Group 1 (0.5 mm), Group 2 (0.8 mm), Group 3 (1.0 mm), Group 4 (1.2 mm)의 4가지 그룹으로 분류되었다. 임플란트 시스템은 외부연결형(US, Osstem, Pussan, Korea) 을 이용하였다. 지대주 시편들은 시멘트 유지형 지대주를 복제하여 제작되었다. 크라운은 1.5 mm 의 두께로 CAD/CAM을 이용하여 제작되었다. 제작된 지대주 시편들을 임플란트에 고정시킨 후 레진시멘트(RelyXTM UniCem, 3M ESPE AG, Seefeld, Germany)를 이용하여 크라운을 합착하였다. 지르코니아 지대주의 파절을 측정하기 위해 만능시험기로 임플란트 장축에 30도의 각도로 힘을 가하였다. 결과: Group 1, Group 2, Group 3와 Group 4의 파절강도는 각각 $236.00{\pm}67.55N$, $599.00{\pm}15.80N$, $588.20{\pm}33.18N$, $97.83{\pm}98.13N$이었다. Group 1이 다른 그룹에 비해 통계학적으로 유의성 있게 낮은 강도를 보여주었다(independent Mann-Whitney U-test, P<.05). 나머지 Group 2, Group 3와 Group 4는 서로 통계학적으로 유의성을 보여주지 않았다(independent Mann-Whitney U-test, P>.05). 결론: 지르코니아 지대주는 파절에 저항하기 위해 적절한 두께를 필요로 한다. 이 실험의 결과로 판단할 때, 지르코니아 지대주가 전치부 임플란트에 적용되기 위해서는 0.8 mm 이상의 두께를 가져야 된다고 추천된다.
최근 방송과 통신의 융합으로 TV에 통신이라는 기술이 접목되면서, TV 시청 형태에 많은 변화를 가져왔다. 이러한 형태의 TV 시청 변화는 서비스 선택의 폭을 넓혀주지만 프로그램을 선택을 위해 많은 시간을 투자해야 한다. 이러한 단점을 개선하기 위해서 본 논문에서는 IPTV환경에서 사용자의 다양한 콘텐츠를 제공하는 방송 환경에서 고객의 시청 정보를 바탕으로 고객 사용정보 온톨로지를 구축하고 그에 따라 고객을 k-medoids 방법을 이용해서 클러스터링 한다. 이를 바탕으로 고객이 선호하는 콘텐츠를 추천 하는 방법을 제안하였다. 실험부분에서 본 제안방법의 우수성을 기존의 방법과 비교하여 보여준다.
개념간의 의미적 유사도 및 관계도(Semantic Similarity/Relatedness)를 구하는 연구는 고전적인 연구에서는 데이터 베이스 통합이나 시스템 통합, 그리고 현대의 연구에 있어서는 태그 및 키워드 추출, 연관 단어 추천 등에 걸쳐 다양한 분야에서 활용되어 온 연구이다. 그 연구는 역사가 오래되었을 뿐만 아니라, 경영정보와 컴퓨터 공학, 계산 언어학에 걸쳐 여러 분야에서도 많은 관심을 가져왔던 연구 분야라고 할 수 있다. 그러나, 지금까지의 개념간의 관계도 계산 방식은 미리 만들어진 사전이나 참조할 수 있는 다른 시맨틱 네트워크(Semantic Network)를 이용하여 계산하는 방법이 주를 이루었다. 이러한 접근 방법의 경우, 개념간의 의미적 관계가 변화에 대한 가능성을 고려하지 않는 것이 일반적이다. 하지만, 정보 기술의 발달과 빠른 사회변화는 개념간의 의미관계 등에 변화를 가져오고 있는 것이 현실이다. 사회적으로 일어나는 사건이나, 문화적 변화 등이 개념간의 의미관계를 변화시키는 것을 물론이며, 이러한 변화가 정보 통신 기술의 도움으로 빠르게 공유되고 있다. 이렇게 개념간의 의미 관계가 시간이나 맥락에 따라 빠르게 변화할 수 있는 가능성이 있음에도 불구하고, 기존의 개념간 의미적 유사도 및 관계도에 대한 연구들은 이러한 '의미관계의 변화'에 대한 새로운 문제에 대해 해답을 제시하지 못한 것이 사실이다. 따라서, 본 연구에서는 개념간의 유사도 연구에 있어 지금까지 있어왔던 '정적인 의미간 관계도 패러다임'에서 '동적인 의미간 관계도 패러다임'으로의 전환의 필요성과 그 당위성을 인지 의미론적(Cognitive Semantics)의 관점에서 역설하고자 한다. 인간이 인지하는 개념간의 의미관계가 변화할 수 있는 이론적 근거를 인지 의미론에서 찾아봄으로써, 패러다임 변화의 방향을 구체적으로 제시하였다. 또한 이러한 패러다임의 변화에 맞추어 개념간의 의미적 유사도 및 관계도에 대한 연구가 어떠한 방향으로 나아가야 할지 구체적인 연구 방향을 제시함으로써 관련 연구자들에게 새로운 연구의 가이드라인을 제시하였다.
전세계적으로 플라스틱에 대한 수요가 늘어감에 따라 플라스틱 폐기물의 양이 증가하고 있다. 수계 내에서의 미세플라스틱의 위해성에 대한 평가 기준에 대해서는 아직 많은 연구가 필요하지만 대체적으로 미세플라스틱을 성질 개선을 위해 첨가하는 화학물이 유독하다는 사실은 여러 문헌을 통해 증명되어있다. 하수처리장(MWTP)은 오수를 처리하는 시설로서 가정에서 발생하는 미세플라스틱이 모이는 미세플라스틱이 모이는 장소이다. 따라서 MWTP 에서의 미세플라스틱 분석이 필요한 상황이지만 이를 진행하기 위해 표준화된 방법이 아직은 없다. 따라서 본 연구에서는 MWTP에서 미세플라스틱 검출을 위한 하수 시료에 적용할 수 있는 최적의 방법론을 조사해보고자 한다. 본 연구에서는 J 하수 처리장에서 수집한 유입수 샘플로부터 미세플라스틱을 분석하는 다양한 전처리 방법 중에서 하수처리장 샘플에 가장 널리 사용되는 펜톤산화와 H2O2 산화법을 선정하였다. 각 전처리 방법별로 측정에 오차를 발생시킬 요소들이 있었으며, 이를 극복하기 위해 펜톤산화 전처리의 경우 밀도분리법 대신 여과를 진행하여 분석을 진행하는 것이 추천되며, H2O2 산화법의 경우 반응 이후 증류수로 세척하는 과정이 필요해 보인다. 분석 결과 미세플라스틱의 농도는 H2O2 산화법을 이용한 샘플의 경우 2.75 ea/L, 펜톤산화법을 이용한 샘플의 경우 3.2 ea/L 로 측정되었으며 대부분 섬유형태로 존재하였다. 또한 정량분석을 현미경을 이용해 육안으로 진행하기 때문에 측정 결과에 대한 신뢰성을 보장하기가 어렵다고 판단해 검정곡선을 만들었다. 총 3개의 검정곡선이 그려졌으며 해당 검정곡선들을 분석한 결과 R2 값이 전부 0.9 이상이였으며 이는 정량분석에 대해 높은 신뢰성을 보장한다. 정성분석으로 MWTP에 유입되는 미세플라스틱의 계열에 대해선 판단할 수 있었지만 각 미세플라스틱의 화학적인 조성에 대해선 확인할 수 없었다. 향후 MWTP에 유입되는 미세플라스틱의 화학적 조성에 대해서 확인하기 위해서 이번 연구를 활용할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.