• 제목/요약/키워드: 추진 시스템(propulsion system)

검색결과 999건 처리시간 0.026초

Study of Cold Gas Propulsion System Utilizing Butane as Liquefied Propellant (부탄을 액화 연료로 사용한 냉가스 추진 시스템에 대한 연구)

  • Kang, Suk-Jin;Kwon, Ky-Beom;Cho, Dong-Hyun;Lee, Sang-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제35권4호
    • /
    • pp.323-328
    • /
    • 2007
  • A direct application of liquefied gas propellants to a typical small satellite cold gas propulsion system was analyzed. Performance of systems using liquefied gas propellant under consideration was compared to that of a nitrogen cold gas propulsion system. Liquefied gas propellant propulsion system's performance, required tank volume, and required propulsion system mass has been calculated at the same mass, volume, and total impulse condition of a typical nitrogen cold gas propulsion system. It was found that the liquefied gas propulsion system has advantages in performance, volume, and mass, compared to a typical nitrogen cold gas system, and can be directly applied to a cold gas propulsion system.

Propulsion System of R.O.K.N Warships & Future of Propulsion System (대한민국 해군 군함의 추진체계와 미래의 추진체계 발전방안 연구)

  • Shin, Seungmin;Park, Jong-hwa;Hong, Yong-pyo;Oh, Kyungwon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제25권6호
    • /
    • pp.53-59
    • /
    • 2021
  • The ROK Navy operates many war ships despite its short history. Various types of war ships, such as submarines, destroyers, frigates, corvette etc., use suitable propulsion systems for the operational requirements of each war ship. A hybrid propulsion system was introduced to change from the current mechanical propulsion system to an electric propulsion system according to the changing patterns of naval warfare, and it is expected that an integrated electric propulsion system will also be introduced. Therefore, this paper investigates the propulsion system of major ships operated by the Korean Navy, predicts the changes in future naval warfare, and proposes a propulsion system for future ships.

Liquid Oxygen Filling System of Propulsion System Test Complex(PSTC) for KSLV-II (한국형발사체 추진기관시스템 시험설비(PSTC) 산화제 공급 시스템)

  • Lee, Janghwan;Choi, Bongsu;Kim, Yongwook;Cho, Kiejoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.1184-1187
    • /
    • 2017
  • The space launch vehicle needs the verification of each stage's propulsion system. The Propulsion System Test Complex(PSTC) is constructed for developing KSLV-II in the Naro space center. Hydraulic and pneumatic system of PSTC should supply propellants and various gases to propulsion system module according to required condition. This paper introduces liquid oxygen filling system of PSTC.

  • PDF

The Characteristics and Prospects of Hybrid Propulsion Systems for Unmanned Aerial Vehicle (무인기용 하이브리드 추진시스템의 특성 및 발전전망)

  • Park, Tosoon;Song, Jaeho;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.554-559
    • /
    • 2017
  • Recently, the global attention is focused on the development of the renewal aero-propulsion systems proved in the air pollution, the noise, the great operational cost, safety and risks. Especially, various study are conducting for the development of the advanced high power to weight ratio aircraft through the significant reduction of fuel consumption and upgrade of the propulsion efficiency, using the alternative propulsion system developments such as hydrogen and solar power system. The hybrid propulsion system can be the representative propulsion system which get the power sources by combining the merits of two or more power sources. In this study, the advancement trends, characteristics, design method which can be applied to the renewal future UAV development.

  • PDF

Preliminary design of lunar lander propulsion system and ground test model (달착륙선 추진시스템 기본 설계 및 지상 모델 설계)

  • Kim, Su-Kyum;Yu, Myoung-Jong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.581-584
    • /
    • 2010
  • Korea Aerospace Research Institute (KARI) started preliminary research about the propulsion system for lunar orbiter and moon lander this year in order to prepare korean moon exploration plan of 2020s. The final goal of this study is to develop a prototype propulsion system for lunar exploration and to perform ground landing test using this propulsion system. In this year, preliminary design of propulsion system and 200N class monopropellant thruster have been conducted. In this paper, the trade-off study result and the design concept of the propulsion system for Korean moon exploration will be introduced and preliminary design of propulsion system will be presented.

  • PDF

Propulsion System for Moon Explorer (달탐사위성 추진시스템)

  • Han, Cho-Young;Lee, Ho-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.155-158
    • /
    • 2008
  • Development of Moon Explorer-1 (orbiter) is supposed to be commenced in 2017 and launched in 2020. In case of Moon Explorer-2 (lander), it would be slated to start in 2021 and launch in 2025. For this reason it is taken for granted to investigate a fundamental propulsion system for a Moon Explorer. In this paper conceptual feasibility and comparison studies are proposed for the propulsion system applicable to a Moon Explorer. Availability of monopropellant/bipropellant/electric propulsion system is compared and analysed as well with precedents overseas. As a result possible candidates for a Moon Explorer propulsion system are suggested.

  • PDF

Design Process of Liquid-Propellant Propulsion System for Space Launch Vehicle (우주발사체용 액체추진시스템 설계 프로세스)

  • Kim Hui-Tae;Han Sang-Yeop;Lee Han-Ju;Cho Kie-Joo;Oh Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.147-150
    • /
    • 2005
  • Space launch vehicles mainly use the liquid-propellant propulsion system which has easy thrust control ability and high specific impulse for that the payload like satellite and spacecraft should be entered into exact orbit. However, the liquid-propellant propulsion system is very difficult to develop because it is more complicate than the solid rocket propulsion system and demands very high technology. In space launch vehicle developing procedure the system design level is very important thing to reduce cost, shorten schedule, and improve the performance. The system design process was introduced for selecting the best liquid-propellant propulsion system on this paper.

  • PDF

A Study on Power contorl for Hybrid electric propulsion system (하이브리드 전기 추진 시스템의 전력 제어에 관한 연구)

  • Oh, Jin-Seok;Jo, Kwan-Jun;Ham, Youn-Jae;Bae, Soo-Young;Lee, Ji-Young
    • Journal of Navigation and Port Research
    • /
    • 제32권10호
    • /
    • pp.765-770
    • /
    • 2008
  • This paper presents the power control for the hybrid electric propulsion system. In this paper, the hybrid propulsion system consists cf the generator and battery as power supply system in ship. The hybrid control system is designed with energy saving algorithm for decreasing the power consumption of power supply system. This paper suggests the method to increase efficiency of hybrid electric propulsion system by developing battery charging system. The performance of power control system is analyzed with the experiment equipment for hybrid propulsion system, and the results showed a good property.

System Design of COMS(Communication, Ocean and Meteorological Satellite) Propulsion System (통신해양기상위성 추진시스템 시스템설계)

  • Park Eung-Sik;Han Cho-Young;Chae Jong-Won;Bucknell S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.426-430
    • /
    • 2005
  • The COMS(Communication, Ocean and Meteorological Satellite) is the first developed three-axis stabilization multi-function satellite on geostationary earth orbit(GEO) in korea, presently scheduled to be launched in 2008. The COMS propulsion system provides the thrust and torque required for the insertion into GEO, attitude and orbit control/adjustment of spacecraft. In this paper, system design of propulsion system, basic functions and design requirement of components are described.

  • PDF

Technical Heritage of UK Chemical Propulsion Systems and COMS Bipropellant Propulsion System (영국산 화학추진시스템의 기술이력과 통신해양기상위성 이원추진제 추진시스템)

  • HAN, Cho Young
    • Journal of Aerospace System Engineering
    • /
    • 제2권1호
    • /
    • pp.28-36
    • /
    • 2008
  • The technology relevant to a bipropellant propulsion system is quite new one in Korea, which is being transferred for the first time, with development of COMS propulsion system. It hasn't ever attempted before, and hasn't got any general idea itself as well, in Korea. The technical heritage of UK bipropellant propulsion pertinent to COMS propulsion system is scrutinised mainly. Furthermore the strong possibility of COMS CPS for the moon explorer mission is rationalised on the basis of the history of successful predecessors.

  • PDF