• 제목/요약/키워드: 추진축계 진동

검색결과 58건 처리시간 0.023초

디젤기관 추진축계의 연성진공에 관한 연구(제2보 : 강제 감쇠 연성진동해석) (Studies on Coupled Vibrations of Diesel Engine Propulsion Shafting(2nd Report: Analyzing of Forced Vibration with Damping))

  • 전효중;이돈출;김의간;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권3호
    • /
    • pp.563-572
    • /
    • 2001
  • With the results of calculation for natural frequencies the reponses of forced coupled vibration of propulsion shafting system were investigated by the modal analysis method. For the forced vibration response analysis, the axial exciting forces, the axial damper/detuner, propeller exciting forces and damping coefficients were extensively considered. As the conclusion of this study, some items are cleared as follows.-The torsional vibration amplitudes are not influenced by the radial excitation forces of the crank shaft. -The axial vibration amplitudes are influenced by the tangential exciting forces as well as the radial exciting forces of the crank shaft. The increase of the amplitudes is observed in the speed range at the neighbourhood of any torsional critical speed. 1The closer the torsional and axial critical speed. the larger coupling effect becomes. -The axial exciting force of propeller is relatively strong comparing with axial exciting forces of cylinder gas pressure and oscillating inertia of reciprocating mechanism. Therefore, the following conclusions are obtained. -Torsional vibration calculation with the classical one dimensional model is still valid. -The influence of torsional excitation at each crank upon the axial vibration is improtant. especially in the neighbourhood of a torsional critical speed. That means that the calculation of axial vibration with the classical one dimensional model is inaccurate in most of cases.

  • PDF

횡 진동 측정에 관한 연구 (A study on the whirling vibration measurement)

  • 선진석;오주원;김용철;김의간
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2012년도 전기공동학술대회 논문집
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, as a result of the application of large and multi-blade propellers with high efficiency for large vessels, the vertical bending stiffness of propulsion shafting system tends to be declined. For some specific vessels, the shaft arrangement leads to the forward stern tube bearing to be omitted, decreasing vertical bending stiffness. In this respect, decreased vertical bending stiffness causes the problem which is the blade order resonance frequency to be placed within the operational range of propulsion shafting system. To verify whirling vibration, the measurement should be carried out covering the range of MCR, however, the range is un-measurable. To resolve the measurement issue, this study shows the measuring method and the estimating method of whiling vibration by using resonance frequency of sub harmonic.

  • PDF

디젤기관 추진 축계의 연성진동에 관한 연구 (제3보 : 프로펠러 기진에 의한 진동과 그 대책) (A Study on Coupled Vibrations of Diesel Engine Propulsion Shafting (3rd Report : Vibration by Propeller Exciting and its Countermeasure))

  • 전효중;이돈출;김의간;김정렬
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.173-179
    • /
    • 2001
  • The torsional or axial critical vibration of the order coinciding with the number of propeller blades is simultaneously excited by the harmonic tangential or radial forces acting on the crank shaft and by the harmonic of the same order from the propeller. The exciting torque of propeller is relatively small comparing with that of crank side, but the exciting force of propeller rather larger than that of crank shaft. With this situation, the exciting force of propeller cannot neglect if the axial vibration of propulsion shafting is calculated. With the propeller in its optimal angular position, i.e. its excitation effect opposed to that of the engine, the stresses at the critical revolution will largely cancel themselves out. In this paper, a method of optimizing the angular propeller position with regard to torsional and axial vibration is studied. The optimal relative angle is determined theoretically by calculation results of coupled torsional-axial vibration.

  • PDF

공기부양선의 추진 및 부양축계 비틀림진동 해석 연구 (A Study on the Analysis of Torsional Vibration of Branched Shafting System for Propulsion and Lift in Air Cushion Vehicle)

  • 손선태;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권4호
    • /
    • pp.335-342
    • /
    • 2007
  • A propulsion and lift shafting system in an air cushion vehicle is flexible multi-elements system which consists of two aeroderivative gas turbines with own bevel gears, four stage lift fan reduction gear, two stage propulsion reduction gear air propellers and high capacity of lifting fans. In addition, the system includes the multi-branched shafting with multi-gas turbine engines and thin walled shaft with flexible coupling. Such a branched shafting system has very intricate vibrating characteristics and especially, the thin walled shaft with flexible couplings can lower the torsional natural frequencies of shafting system to the extent that causes a resonance in the range of operating revolution. In this study, to evaluate vibrational characteristics some analytical methods for the propulsion and lift shafting system are studied. The analysis, including natural frequencies and mode shapes, for five operation cases of the system is conducted using ANSYS code with a equivalent mass-elastic model.

추진축계 비틀림 진동 감쇠를 위한 점성 댐퍼의 최적 설계 (Optimum Design of Viscous Fluid Damper for Reducing the Torsional Vibration of Propulsion Shaft System)

  • 박상윤;한국현;박주민;권성훈;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제25권9호
    • /
    • pp.606-613
    • /
    • 2015
  • In this study, the torsional vibration analysis for a marine propulsion system is carried out by using the transfer matrix method(TMM). The torsional moment produced by gas pressure and reciprocating inertia force may yield severe torsional vibration problem in the shaft system which results in a damage of engine system. There are several ways to control the torsional vibration problem at hand, firstly natural frequencies can be changed by adjusting shaft dimensions and/or inertia quantities, secondly firing order and crank arrangement are modified to reduce excitation force, and finally lower the vibration energy by adopting torsional vibration damper. In this paper, the viscous torsional vibration damper is used for reducing the torsional vibration stresses of shaft system and it is conformed that optimum model of the viscous damper can be determined by selecting the geometric design parameters of damper and silicon oil viscosity.

다자유도계를 갖는 듀핑 진동계의 강제진동해석 (Forced Vibration Analysis for Duffing's Vibration Systems with the Multi-Degree-of-Freedom Systems)

  • 전진영;박용남;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.18-24
    • /
    • 2000
  • As ship's propulsion shafting system has been complicated, many linear methods that have been used until now are not sufficient enough to produce proper solutions and these solutions are ofter unreasonable. So we need to solve nonlinear systems, and many methods for solving nonlinear vibration system have been developed. In this study, the propulsion shafting system was modeled with Duffing's nonlinear vibration system and multi-degree-of-freedom, and analyzed by using Quasi-Newton method. And for the purpose of confirming the reliability of the calculating results for nonlinear forced torsional vibration of the propulsion shafting system, the nonlinear calculated results were compared with the linear calculated ones for ship's propulsion shafting system. In the result, for analysis of the forced torsional vibration of the propulsion systems with nonlinear elements, the modified Newton's method is confirmed reasonable.

  • PDF

소형추진축계에서 스트레인 게이지를 이용한 휘둘림 진동에 대한 계측 및 평가 (Measurement and Assessment of Whirling Vibration using Strain Gage in Small Propulsion Shafting System)

  • 김진희;김준성;김태언;이돈출
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.527-532
    • /
    • 2011
  • Whirling vibration in severe cases may result in shaft cracking and typically gap sensors are utilized to confirm its values under the outside underwater of ship. The bending stress value causing whirling vibration on the propulsion shafting system of a 40-ton small vessel was verified by theoretical analysis and its vibration measurement. However, because of underwater condition, the accuracy for this measurement method is presumed low. In this study, the strain gauge basic principle and the bending stress calculation method are considered. The relationships are then applied for obtaining the whirling vibration of the 40-ton small vessel. As a result, a new method in estimation of whirling vibration is reached and suggested.

  • PDF

디젤기관의 토크 하모닉스에 대한 이론적 해석 (A Study on the Thoretical Analysis of the Torque Harmonics for Diesel Engines)

  • 이용진;장민오;김의간;전효중
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.465-473
    • /
    • 2000
  • In this crankshaft of marine diesel engines the exciting torques are produced by gas pressure and reciprocating masses. These torques are periodically changing and are extremely out of balance. To calculate the torsional vibrations of propulsion shafting caused by unbalanced torque the torque harmonics are utilized. Until now to calculate the torsional vibrations of propulsion shafting. the torque harmonics have been supplied by the engine maker. When the torque harmonics of an engine are not available the torque harmonics of a similar engine type had to be used. However such data is not suitable for the reliable calculations of torsional vibrations. In this paper the combustion characteristics of marine diesel engines including $\rho{-}\upsilon$ diagram are investigated and the torque harmonics based on these are theoretically calculated. reliability of the calculations is confirmed by comparing them with those of an engine maker. This study should prove useful for the calculations of torsional vibrations for diesel engine propulsion shafting. particularly for 4-stroke engines whose torque harmonics are difficult to obtain directly from the engine and not ordinarily supplied by the engine maker.

  • PDF

선박용 추진축계 비틀림진동 실험장치의 소개 (Experimental Equipment for Torsional Vibration of Marine Propulsion Shafting)

  • 김상환;김지근;이돈출;박성현
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.149-153
    • /
    • 2005
  • Marine Propulsion shafting system coupled with medium diesel engine forms multi-degree torsional vibration system which consist of many inertia masses such as crank, flywheel, propeller and sometimes gear system is adopted additionally for the purpose of improving propeller's propulsion efficiency or connecting with PTO/PTI. The periodic excitation torques generated by combustion pressure in cylinder and reciprocating masses induce various kinds of vibrations in this shafting system. If the frequency of this excitation torques is equal to the natural frequency of the shafting, the amplitude of the torsional vibration increases steeply and the damage of crankshaft or gears may be occurred by that. This frequency is called critical speed. When making a plan for shafting system, it is important for this frequency to be expected exactly and not to be in commonly used speed. For this reason, this paper introduces the experimental equipment for torsional vibration of marine propulsion shafting system and describes the theoretic and the experimental methods to look for natural frequencies.

  • PDF

추진축계(推進軸系)의 연성횡진동(聯成橫振動)에 관(關)하여 (Coupled Transverse Vibrations of Propeller-Shaft Systems)

  • 안시영
    • 대한조선학회지
    • /
    • 제22권1호
    • /
    • pp.38-44
    • /
    • 1985
  • A computer program was developed for the analysis of the coupled transverse vibrations of a multi-supported shaft system. The program, based on the theory of Transfer Matrix Method, was written including the system parameters such as the entrained water and gyroscopic effects of the propeller, the rigidity of bearing combined with the oil film effect, and the whirling frequency of the shaft. The program was used to calculate the resonance frequency of the shafting system of the ship Hanbada. The results show good agreement with the measured values. The results are also compared with those of F.E.M. from the comparison, it is found that both results agree well with each other.

  • PDF