• Title/Summary/Keyword: 추진제 표면

Search Result 102, Processing Time 0.024 seconds

Characterics of Combustion Response of Solid Propellants to Radiant Heat Flux Fluctuation (복사 열속 교란에 대한 고체 추진제의 연소 반응 특성)

  • Nam, Sam-Sik;Lee, Chang-Jin;Kim, Seong-In
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.111-122
    • /
    • 1998
  • 수정된 연소 반응 함수[9]를 이용하여 복사 열속 교란에 대한 연소 반응 특성을 살펴 보았다. DB N5추진제에 대한 Son 등[6]의 실험 결과오 비교할 때 본 연구에서 사용한 연소 반응 함수가 낮은 활성화 에너지에서 비슷한 피크를 예측할 수 있었다. 이것은 Son 등[6]에 의해 과소 평가된 복사 열속의 영향이 고려되었기 때문인 것으로 판단 된다. 민감 변수들을 구하기 위하여 Iribicu 등[2]이 제시한 정상 연소 관계식을 이용하였는데, 표면 온도에 대한 정상 연소율 변화를 비교한 결과 Zanotti[8]의 AP2 추진제의 실험 결과와 정성적으로 비슷한 결과를 나타내었다. Zebrowski 등[4]의 연소 반응 함수와도 비교하였는데 활성화 에너지가 Zanotti[8]가 제시한 범위의 값을 가질때는 피크에 있어 상당한 차이를 보이지만, 그 보다 더 큰 활성화 에너지에서는 $f_rJ$의 영향이 거의 사라져 비슷한 결과를 보여주고 있다. 이는 활성화 에너지가 클수록 본 연구에서 사용한 연소 반응 함수가 [6]과 같아지지만, [8]에서 제시된 활성화 에너지 범위에서는 본 연구에서 사용한 연소 반응 함수로 예측함이 타당함을 의미한다.

  • PDF

Oxidation Behaviors of STS Series in Oxidizer-Rich Environment Using H2O2/Catalytic Reaction (H2O2/촉매 반응을 이용한 산화제 과잉 환경에서의 STS 계열 산화 거동)

  • Shin, Donghae;Choi, Jiseon;Shin, Minku;Ko, Youngsung;Kim, Seonjin;Han, Yeongmin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.923-927
    • /
    • 2017
  • Metal exposed to high temperature/high pressure/oxidizer-rich environment may cause rapid oxidation(ignition and combustion). Therefore, this study was performed for the selection of metal appropriate for high temperature/high pressure/oxidizer-rich environment. In order to make the high temperature, high pressure and oxidizer-rich environment, the test facility utilizing the catalytic reaction of hydrogen peroxide was constructed and the metal oxidation and ignition of the STS series metals were evaluated. The result showed that the change of the selected material (discoloration) and the surface roughness were observed, but the change in the weight and thickness of the specimen was not significant.

  • PDF

The Interaction of Vortex Shedding Behavior in Hybrid Rocket Combustion (와류간섭에 의한 하이브리드로켓 연소 특성)

  • Park, Kyung-Soo;Lee, Chang-Jin;Shin, Kyung-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.244-248
    • /
    • 2012
  • A series of hybrid rocket combustion experiments were carried out with PMMA/GOx changing diameter and length of the disk installed at pre-chamber. The disk can generate vortex shedding flow and change flow conditions prior to entering the fuel grain which could also alter the combustion characteristics and pressure oscillations. The interaction of vortex shedding in the pre-chamber and small-scale vortices adjacent to burning surfaces by using combustion test.

  • PDF

LES for Turbulent Flow in Hybrid Rocket Fuel Garin (하이브리드 로켓 산화제 난류 유동의 LES 해석)

  • Lee, Chang-Jin;Na, Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.233-237
    • /
    • 2007
  • Recent experimental data shows that an irregular fuel surface pops up during the combustion test. This may contribute to the agitated boundary layer due to blowing effect of fuel vaporization. Blowing effect can be of significance in determining the combustion characteristics of solid fuel within the oxidizer flow. LES was implemented to investigate the flow behavior on the fuel surface and turbulence evolution due to blowing effect. Simple channel geometry was used for the investigation instead of circular grain configuration without chemical reactions. This may elucidate the main mechanism responsible for the formation of irregular isolated spots during the combustion in terms of turbulence generation. The interaction of turbulent flow with blowing mass flus causes to breakup turbulent coherent structures and to form the small scale isolated eddies near the fuel surface. This mechanism attributes to the formation of irregular isolated sopt on the fuel surface.

  • PDF

Performance Test of an Oxidizer Tunnel-Type Pipe for Launch Vehicle (발사체 산화제 터널형 배관 성능시험)

  • Kil, Gyoung-Sub;Han, Sang-Yeop;Kho, Hyeon-Seok;Shin, Dong-Sun;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.273-277
    • /
    • 2009
  • An oxidizer tunnel-type pipe, which shall transport oxidizer from an oxidizer tank to a turbo-pump of an engine, studied is installed through a fuel tank located under an oxidizer tank. A tunnel-type pipe can save weight compared to a detour-type pipe, however may vary the temperature of fuel stored in a fuel tank because of a broad heat transfer area. Hence in this study the characteristics of main oxidizer pipe and thermal propagation from oxidizer to a fuel tank are monitored by a cryogenic performance test with a tunnel-type pipe. In addition, the possibility of adaptation of an oxidizer tunnel-type pipe to launcher system is also analyzed.

  • PDF

Controlling Factors of Open-Loop Combustion Response to Acoustic Pressures in Liquid Propellant Rocket Engine (강한 압력파동에 구속된 액체 추진제 연소응답의 지배인자)

  • Yoon Woongsup;Lee Gilyong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.267-273
    • /
    • 2004
  • This paper targets to define controlling factors of pressure-coupled combustion response and estimate their effects on droplet evaporation process. Dynamic characteristics of hydrocarbon propellant vaporization perturbed by acoustic pressure are numerically simulated and analyzed. 1-D droplet model including phase equilibrium between two phases is applied and acoustic wave is expressed by harmonic function. Effects of various design factors and acoustic pressure on combustion response are investigated with parametric studies. Results show that driving frequency of acoustic perturbation and ambient pressure have important roles in determining magnitude and phase of combustion response. On the other hand, other parameters such as gas temperature, initial droplet size and temperature, and amplitude of acoustic wave cause only minor changes to magnitude of combustion response. Resultant changes in phase of heat of vaporization and thermal wave in droplet highly influence magnitude and phase of combustion response.

  • PDF

Effect of Radial Gas Jet Momentum on Spray Characteristics in a Coaxial Porous Injector (동축형 다공성재 분사기의 반경방향 운동량이 분무특성에 미치는 영향)

  • Kim, Do-Hun;Seo, Min-Kyo;Lee, In-Chul;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.104-105
    • /
    • 2012
  • The design of coaxial porous injector was suggested to improve the mixing and atomizing performance at the center region of the conventional 2-phase flow coaxial shear injector spray. Several cold flow tests of 2-dimensional injectors was performed, and the gas injection area was varied to determine the effect of the magnitude of gas radial momentum.

  • PDF

Exhaust Plume Behavior Study of MMH-NTO Bipropellant Thruster (MMH-NTO 이원추진제 추력기의 배기가스 거동 해석 연구)

  • Kim, Hyeonah;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.300-309
    • /
    • 2017
  • A spacecraft obtains a reaction momentum required for an orbit correction and an attitude control by exhausting a combustion gas through a small thruster in space. If the exhaust plume collides with spacecraft surfaces, it is very important to predict the exhaust plume behavior of the thruster when designing a satellite, because a generated disturbance force/torque, a heat load and a surface contamination can yield a life shortening and a reduction of the spacecraft function. The purpose of the present study is to ensure the core technology required for the spacecraft design by analyzing numerically the exhaust gas behavior of the 10 N class bipropellant thruster for an attitude control of the spacecraft. To do this, calculation results of chemical equilibrium reaction between a MMH for fuel and a NTO for oxidizer, and continuum region of the nozzle inside are implemented as inlet conditions of the DSMC method for the exhaust plume analysis. From these results, it is possible to predict a nonequilibrium expansion such as a species separation and a backflow in the vicinity of the bipropellant thruster nozzle.

Parameter identification for the bubble point measurement of Liquid Acquisition Device (액체포집장치의 기포점 측정을 위한 변수식별)

  • Jeon, Sang-Eon;Park, Soo-Hyung;Byun, Yung-Hwan;Jung, Young-Suk;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.416-423
    • /
    • 2012
  • Liquid acquisition device in the liquid propellant supply system is required to protect entrance of gas bubble into the propulsion system. The device exploits the capillary effect of micro-sized poles in a screen and supplies pure liquid-phase propellant to the propulsion system. The bubble point is the most important performance parameter in the design of a liquid acquisition device. In this paper, performance parameters affecting the bubble point are identified through literature survey, in order to develop the experimental setup for the bubble point measurement.

  • PDF

Oscillation Characteristics of Turbulent Channel Flow with Wall Blowing (채널유동에서 질량분사에 의한 표면유동의 진동 특성)

  • Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.62-68
    • /
    • 2009
  • The interaction between wall blowing and oxidizer flow can generate a very complicated flow characteristics in combustion chamber of hybrid rockets. LES analysis was conducted with an in-house CFD code to investigate the features of turbulent flow without chemical reactions. The numerical results reveal that the flow oscillations at a certain frequency exists on the fuel surface, which is analogous to those observed in the solid propellant combustion. However, the observation of oscillating flow at a certain frequency is only limited to a very thin layer adjacent to wall surface and the strength of the oscillation is not strong enough to induce the drastic change in temperature gradient on the surface. The visualization of fluctuating pressure components shows the periodic appearance of relatively high and low pressure regions along the axial direction. This subsequently results in the oscillation of flow at a certain fixed frequency. This implies that the resonance phenomenon would be possible if the external disturbances such as acoustic excitation could be imposed to the oscillating flow in the combustion chamber.