Previous area-based stereo matching algorithms find the disparity by first computing the sum of squared differences (SSD) between corresponding points using a rectangular window, and then searching the position of the minimum SSD within the disparity range. These algorithms generate relatively many matching errors around depth discontinuities, since the SSD function may fail to search for the minimum because of varying disparity profiles in such areas. In this paper, in order to improve the matching accuracy around the depth discontinuities, a new correlation function based on robust estimation technique is proposed for stereo matching. In addition, while previous stereo algorithms utilize a single rectangular window for computing the correlation function, the proposed matching algorithm utilizes 4-directional line masks additionally to reduce the matching errors further. It has been turned out that the proposed algorithm reduces matching errors around depth discontinuities significantly. Experimental results are presented in this paper, comparing the performance of the proposed technique with those of previous algorithms using both synthetic and real images.
본 논문은 얼굴인식 시스템 상에서 마스크를 착용한 변장이미지가 입력 감지될 경우 나머지 노출된 부분의 특징만을 가지고 가려진 사람의 신원을 추정하는 방법을 기술한다. 얼굴영역 검출 후에 마스크상단의 눈 주변 이미지만을 가지고 특징점 추출을 실시하여 등록된 얼굴 인증 데이터 베이스와의 특징점 비교를 통해 사람의 신원을 추정한다. 매칭에 쓰일 특징점 추출에는 조명에 강인하고 영상의 크기와 회전에도 변하지 않는 특성을 가진 SIFT(Scale Invariant Feature Transform) 알고리즘을 이용한다. 특징점 매칭을 통해 정확한 매칭률은 전체 실험결과를 통해 평가한다.
IoT 기술과 인공지능의 발전에 따라 다양한 디지털 영상장비가 산업현장에서 사용되고 있다. 영상 데이터는 카메라 또는 센서에서 취득되는 과정 중 잡음에 훼손되기 쉬우며, 훼손된 영상은 영상처리 과정에서 악영향을 미치기 때문에 전처리 과정으로 잡음제거가 요구되고 있다. 본 논문에서는 랜덤 임펄스 잡음에 훼손된 영상을 복원하기 위해 잡음추정에 기반한 스위칭 필터 알고리즘을 제안하였다. 제안한 알고리즘은 영상의 국부마스크 내부의 화소값의 유사성에 따라 잡음추정과 에러 검출을 진행하였으며, 국부마스크에 존재하는 잡음 비율에 따라 필터를 선택하여 스위칭하였다. 제안하는 알고리즘의 잡음제거 성능을 분석하기 위해 시뮬레이션을 진행하였으며, 확대영상 및 PSNR 비교 결과 기존 방법에 비해 우수한 성능을 나타내었다.
웨이블릿 영역은 일반적으로 신호 성분을 많이 포함하는 큰 계수와 신호 성분이 작은 크기의 계수로 나누어 질 수 있다. 이러한 웨이블릿 계수의 통계적 특성을 가우스 혼합 모델로 설정하고, 잡음 제거에 응용하는 것은 효율적이다. 본 논문에서는 웨이블릿 계수의 혼합 모델링을 이용하여 영상의 잡음 제거 방법을 제안한다. 적절한 문턱값을 이용하여 웨이블릿 계수를 두영역으로 분리하여 이진 마스크를 생성하고, 생성된 마스크의 정보는 잡음 제거에 효율적으로 사용된다 또한 생성된 마스크의 정보를 형태학적 필터를 이용하여 보다 정확히 추정하고 이를 이용하여 제안한 잡음 제거 방법의 성능을 높이는 방법을 제안한다. 모의실험 결과를 통하여 제안 방법이 최신 잡음 제거 방법보다 우수한 PSNR을 나타낸다는 것을 보여 준다.
영상, 차선, 물체 인식 등을 위한 에지 검출은 중요한 영상 처리 방법이며, 이를 위한 기존의 방법에는 Sobel, Prewitt, Roberts, Laplacian, LoG(Laplacian of Gaussian) 등이 있다. 이러한 방법들은 salt & pepper 잡음에 훼손된 영상에서 특성이 미흡하다. 이와 같은 문제점을 개선하기 위하여 본 논문에서는 중심 화소의 인접 화소를 중심으로 국부 마스크를 설정하여, 그것의 중심 화소가 비잡음인 경우 그대로 처리하고 잡음인 경우 추정 마스크를 구한 후, 가중치 마스크를 적용하여 에지를 검출하는 알고리즘을 제안하였다.
은행에서 현금 지급기(ATM)를 부정한 목적으로 사용하는 사람들은 보통 마스크나 선글라스, 모자 같은 것으로 얼굴을 은폐하고 인출을 하는 경우가 많다. 그렇기 때문에 마스크나 선글라스, 모자로 얼굴을 가림으로써 특징을 검출하기 쉽지 않아 얼굴 인식을 통한 사람 판단이 어렵다. 본 논문에서는 차 영상과 Template Matching 을 통해 얼굴 영역을 추출하고 Adaptive Boost 를 통해 얼굴의 특징 점을 검출한 후 스킨 컬러 정보를 이용하여 현재 사람의 은폐 정보를 추정하는 방법을 제안한다. 제안된 방영은 영상신호처리에 강하고 비용이 적으며 적은 전력으로 동작하는 DSP 기반에 탑재 함으로써 ATM 기에 탑재하기 적합하고 또한 다른 형태의 검증 시스템에 적용할 수 있는 효율적인 구조를 제시한다.
본 논문은 RGB 영상 데이터셋의 일부만을 지도학습하여(Sparsely-supervised learning) Annotation 되지 않은 영상에 대해 손-객체의 3D 포즈를 복원하기 위한 방법을 제안한다. 기존의 연구에서는 손-객체의 포즈에 해당하는 6DoF 만을 학습 데이터로 활용한다. 이와 달리, 본 논문에서는 정확도 향상을 위해 복원된 결과를 동일한 입력 영상 내에서 비교 가능하도록 3D 모델로 복원한 결과를 입력 영상의 마스크로 만들어 학습에 반영하였다. 구체적으로 추정된 포즈로 만들어낸 마스크를 입력 영상에 적용한 결과와 Ground-truth 포즈를 적용한 영상을 학습 시에 손실 함수에 반영하였다. 비교 실험을 통해 제안된 방법이 해당 방법을 적용하지 않은 경우 보다 3D 매쉬 오차가 적었음을 확인할 수 있었다.
원거리에서의 획득한 영상은 해상도가 낮고 블러링과 잡음에 의한 영향이 크다. 이러한 문제점들은 얼굴 검출 과정에서 보다 많은 오류영역을 산출할 수 있다. 본 논문에서는 AdaBoost 필터와 얼굴의 색상과 외형 정보를 이용한 순차적인 검증 단계를 적용한 얼굴 검출 방법을 제안한다. AdaBoost 방법으로 검출된 오류(false alarm)는 피부색 필터와 가변 경계마스크 필터로 순차적으로 제거된다. 피부색 필터는 사각 윈도우 영역과 화소 별로 적용되는 두 단계로 구성되어 최종적으로 이진 얼굴 클러스터 영상을 구성한다. 기존의 고정된 경계마스크 필터의 단점을 해결하기 위하여 얼굴 클러스터영역에 부합하는 타원을 추정하여 경계마스크의 크기를 산출하고 가로-세로 비율의 적정성을 검토한다. 실험에서는 CCTV와 스마트 폰으로 획득한 영상을 이용하여 제안된 얼굴 검출 방법이 원거리에서 획득한 영상의 얼굴 검출에 효과적임을 보인다.
최근 IoT 기술과 AI의 발전에 따라 다양한 분야에서 무인화와 자동화가 진행되고 있으며, 사물인식과 객체분류 등 자동화의 기반이 되는 영상처리에 대한 관심이 높아지고 있다. 영상처리 과정에서 잡음 제거는 영상의 품질 또는 시스템의 정확성과 신뢰성에 큰 영향을 미치는 과정으로 다양한 연구가 진행되고 있으나, 영상에서 임펄스 잡음의 밀도가 높은 영역에 대한 영상을 복원하기 어렵다는 문제점이 있다. 따라서 본 논문은 영상에서 임펄스 잡음 훼손된 영역을 복원하기 위해 부분 마스크와 라그랑지 보간법에 기반한 필터 알고리즘을 제안한다. 제안한 알고리즘은 필터링 마스크와 잡음 추정치를 서로 비교하여 필터링 과정을 스위칭하였으며, 영상의 저주파 및 고주파 성분에 따라 퍼지 가중치를 계산하여 영상을 복원하였다.
턱 논문에서는 복잡한 배경에서 다양한 조명과 얼굴의 크기 변화를 가지는 영상으로부터 눈을 검출하는 새로운 방법을 제안한다. 반사 대칭 조건과 타원 모델링을 이용하여 먼저 얼굴을 검출하고 그 영역 내에서 수리 형태학을 이용한 valley detection, binary opening을 수행함으로써 눈 후보 영역을 추출한다. 그리고 정확한 눈동자의 위치를 검출하기 위하여 눈동자 정합 마스크를 제안하였다 얼굴 검출 과정에서 타원의 단축 길이를 추정하여 추출된 얼굴 영상의 크기를 정규화 하였다. 정규화 된 얼굴 영상에서 눈 검출에 적합한 형태소(structuring element)를 결정하여 눈 검출 결과를 보다 견실하게 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.