• Title/Summary/Keyword: 추적 및 융합 알고리즘

Search Result 60, Processing Time 0.03 seconds

A Fusion Algorithm considering Error Characteristics of the Multi-Sensor (다중센서 오차특성을 고려한 융합 알고리즘)

  • Hyun, Dae-Hwan;Yoon, Hee-Byung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.4
    • /
    • pp.274-282
    • /
    • 2009
  • Various location tracking sensors; such as GPS, INS, radar, and optical equipment; are used for tracking moving targets. In order to effectively track moving targets, it is necessary to develop an effective fusion method for these heterogeneous devices. There have been studies in which the estimated values of each sensors were regarded as different models and fused together, considering the different error characteristics of the sensors for the improvement of tracking performance using heterogeneous multi-sensor. However, the rate of errors for the estimated values of other sensors has increased, in that there has been a sharp increase in sensor errors and the attempts to change the estimated sensor values for the Sensor Probability could not be applied in real time. In this study, the Sensor Probability is obtained by comparing the RMSE (Root Mean Square Error) for the difference between the updated and measured values of the Kalman filter for each sensor. The process of substituting the new combined values for the Kalman filter input values for each sensor is excluded. There are improvements in both the real-time application of estimated sensor values, and the tracking performance for the areas in which the sensor performance has rapidly decreased. The proposed algorithm adds the error characteristic of each sensor as a conditional probability value, and ensures greater accuracy by performing the track fusion with the sensors with the most reliable performance. The trajectory of a UAV is generated in an experiment and a performance analysis is conducted with other fusion algorithms.

Design of Multi Object Tracking System Using Intelligent Recognition and Tracking Technology (지능형 인식 및 추적 기술을 이용한 다중 객체 추적 시스템의 설계)

  • Oh, Senug-Hun;Yoo, Sung-Hoon;Kim, Su-Chan;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1367-1368
    • /
    • 2015
  • 본 논문에서는 지능형 인식 기술인 RBFNNs 패턴분류기와 추적 기법인 Particle Filter를 융합한 다중 객체 추적 시스템을 설계한다. 여러 객체가 동시에 존재하는 상황에서 각각의 객체를 개별적으로 추적하기 위해 추적 기법에 인식 알고리즘을 추가하였다. 학습 데이터는 다양한 상황에서 정확한 인식 결과를 확인하기 위해 정면, 좌, 우측 데이터를 사용하였으며, 테스트 영상에서 검출된 얼굴 이미지를 테스트 데이터로 사용하였다. 추적 알고리즘인 Particle Filter를 사용하여 검출된 객체의 추적을 수행하며, 인식 결과를 바탕으로 다양한 객체에 대하여 개별적인 추적을 수행한다.

  • PDF

Robust Maneuvering Target Tracking Applying the Concept of Multiple Model Filter and the Fusion of Multi-Sensor (다중센서 융합 및 다수모델 필터 개념을 적용한 강인한 기동물체 추적)

  • Hyun, Dae-Hwan;Yoon, Hee-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.51-64
    • /
    • 2009
  • A location tracking sensor such as GPS, INS, Radar, and optical equipments is used in tracking Maneuvering Targets with a multi-sensor, and such systems are used to track, detect, and control UAV, guided missile, and spaceship. Until now, Most of the studies related to tracking Maneuvering Targets are on fusing multiple Radars, or adding a supplementary sensor to INS and GPS. However, A study is required to change the degree of application in fusions since the system property and error property are different from sensors. In this paper, we perform the error analysis of the sensor properties by adding a ground radar to GPS and INS for improving the tracking performance by multi-sensor fusion, and suggest the tracking algorithm that improves the precision and stability by changing the sensor probability of each sensor according to the error. For evaluation, we extract the altitude values in a simulation for the trajectory of UAV and apply the suggested algorithm to carry out the performance analysis. In this study, we change the weight of the evaluated values according to the degree of error between the navigation information of each sensor to improve the precision of navigation information, and made it possible to have a strong tracking which is not affected by external purposed environmental change and disturbance.

  • PDF

Optimal Memory Management of Viterbi Decoder (비터비 복호기의 최적 메모리 제어)

  • 조영규;정차근
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.234-237
    • /
    • 2003
  • 본 논문은 이동 통신 및 IEEE 802.lla WLAN에서 사용하고 있는 컨벌루셔널 부호의 복호기인 비터비 복호기의 SMU(Survivor Metric Unit)의 최적 메모리 제어에 관한 연구이다. 비터비 복호기기 구조는 크게 BMU, ACSU, SMU부로 구성된다. 이때 SMU부는 최적의 경로를 역추적 하여 최종 복호 데이터를 출력해 주는 블록으로, 역추적 길이에 따라 메모리 사용 양과 복호 성능이 좌우된다. 따라서 본 논문에서는 최적 메모리 제어 알고리즘을 제안함으로써 복호 속도의 향상과 메모리 사용 양을 줄이는 방법을 제안한다. 제안 알고리즘의 성능을 검증하기 위해 기존의 비터비 복호기와 역추적 길이에 따른 비터비 복호기의 성능을 실험을 통해 분석함으로써 제안 방법의 객관적인 성능을 분석한다.

  • PDF

Reseach for object auto tracking technology using video analysis and BLE device (근거리 무선통신 기기와 영상분석을 이용한 객체추적 기법에 관한 연구)

  • Choung, Kyung-Ho;Park, Jae-Yong;Kim, Jung-Gon
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.96-99
    • /
    • 2015
  • 본 논문에서는 중복되지 않는 서로 다른 카메라의 영상을 활용한 동일 객체 판단 및 추적 기술에 대하여 소개한다. 영상분석에서 색상 정보는 가장 기본이 되는 중요한 정보라 할 수 있다. 특히 색상 정보를 이용하는 히스토그램은 일반적으로 추적, 인식 등에 많이 사용되고 있으나 이동 객체나 조도 변화 등에 따라 성능에 차이를 보인다. 이러한 문제점을 해결하고자 본 연구에서는 동일 객체 판단을 위해 대표적으로 사용되는 히스토그램 정합의 두 알고리즘(HSV 공간에서의 Histogram matching 방법과 RGB 공간에서의MCSHR 알고리즘) 결합을 통해 분할 히스토그램은 객체를 3조각으로 나누어 전체와 각각의 히스토그램을 구하며 MCSHR을 RGB공간이 아니 Hue 공간 히스토그램으로 변경하여 유사도를 도출 하였으며 조도 변화에 강인한 모델을 만들기 위해 Controlled equalization기법을 사용하여 원 영상의 히스토그램의 확률과 평활화한 히스토그램의 확률 융합을 시도 하였다. 해당 실험의 비교 결과 기존 HSV공간에서 Histogram matching을 통한 유사도 비교보다 12.9% 향상된 정합율의 결과를 보였다. 또한 영상 정보와 스마트 기기를 통한 인식 방법의 융합을 통해 영상 내에서 동일 객체 판단에 대한 추가 정보 제공에 대해 방법론 적인 부분을 제안 하였다.

  • PDF

Implementation of Real Time Automatic Running System using Fuzzy Analytic Hierachy Process (퍼지AHP를 이용한 실시간 자율주행 시스템의 구현)

  • Jin, Hyeon-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.328-332
    • /
    • 2007
  • 본연구에서는 센서의 융합을 통하여 환경을 인식하며, 주변환경에 대한 지식을 갱신, 학습할수 있는 방법론을 연구하며, 동적인 장애물의 감지및 움직임 예측에 기반한 지능적 회피 알고리즘과 AHP를 이용한 Navigation Strategy수정과 이동 로봇 스스로 최적의 결과를 낼수 있게 개선 시키는 알고리즘을 구현한다. 그와 더불어 AHP를 이용하여 Navigation Performance를 최대로 높일 수 있는 방향을로 진화시키는 알고리즘을 구현한다. 또한 부여된 임무수행을 위한 목표물 추적을 위한 비전 시스템에서의 대상체 추출및 인식 알고리즘을 개발하며 인간뇌의 환경인식 체계와 유사한 방식의 Map building기법을 연구한다.

  • PDF

인공 진화에 의한 학습 및 최적화

  • 장병탁
    • ICROS
    • /
    • v.1 no.3
    • /
    • pp.52-61
    • /
    • 1995
  • 본 고에서는 진화계산의 동작 원리와 이론적 기반에 대해 살펴봄으로써 그 원리를 이해하고 앞으로의 응용가능성에 대하여 고찰하고자 한다. 이를 위해 먼저 대부분의 진화 알고리즘에 공통되는 기본 구성 요소와 계산절차를 기술하고, 진화 알고리즘을 이용하여 특정문제를 풀고자 할 때 고려할 사항에 대하여 기술한다. 다음에는 간단한 응용 문제를 예로 들어 이 문제에 진화 알고리즘을 적용하고 그 동작과정을 추적함으로써 실제 적용에 있어서의 여러 가지 결정사항과 그 수행과정을 구체적으로 살펴본다. 또한 진화 알고리즘의 이론적 배경을 이해하기 위해 스키마와 빌딩 블록 그리고 스키마 정리에 대해서 알아본다. 마지막으로 진화계산방식과 다른 지능적 계산 기술들과의 융합 가능성의 예로서, 유전 프로그래밍에 의한 신경망 구조의 설계 및 학습에 대하여 살펴본다.

  • PDF

Direction of Arrival Estimation under Aliasing Conditions (앨리아싱 조건에서의 광대역 음향신호의 방위각 추정)

  • 윤병우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • It is difficult to detect and to track the moving targets like tanks and diesel vehicles due to the variety of terrain and moving of targets. It is possible to be happened the aliasing conditions as the difficulty of antenna deployment in the complex environment like the battle fields. In this paper, we study the problem of detecting and tracking of moving targets which are emitting wideband signals under severe spatial aliasing conditions because of the sparse arrays. We developed a direction of arrival(DOA) estimation algorithm based on subband MUSIC(Multiple Signal Classification) method which produces high-resolution estimation. In this algorithm, the true bearings are invariant regardless of changes of frequency bands while the aliased false bearings vary. As a result, the proposed algorithm overcomes the aliasing effects and improves the localization performance in sparse passive arrays.

  • PDF

Object Tracking Using Information Fusion (정보융합을 이용한 객체 추적)

  • Lee, Jin-Hyung;Jo, Seong-Won;Kim, Jae-Min;Chung, Sun-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.666-671
    • /
    • 2008
  • In this paper, we propose a new method for tracking objects continously and successively based on fusion of region information, color information and motion template when multiple objects are occluded and splitted. For each frame, color template is updated and compared with the present object. The predicted region, dynamic template and color histogram are used to classify the objects. The vertical histogram of the silhouettes is analyzed to determine whether or not the foreground region contains multiple objects. The proposed method can recognize more correctly the objects to be tracked.

An Object Tracking Method for Studio Cameras by OpenCV-based Python Program (OpenCV 기반 파이썬 프로그램에 의한 방송용 카메라의 객체 추적 기법)

  • Yang, Yong Jun;Lee, Sang Gu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.291-297
    • /
    • 2018
  • In this paper, we present an automatic image object tracking system for Studio cameras on the stage. For object tracking, we use the OpenCV-based Python program using PC, Raspberry Pi 3 and mobile devices. There are many methods of image object tracking such as mean-shift, CAMshift (Continuously Adaptive Mean shift), background modelling using GMM(Gaussian mixture model), template based detection using SURF(Speeded up robust features), CMT(Consensus-based Matching and Tracking) and TLD methods. CAMshift algorithm is very efficient for real-time tracking because of its fast and robust performance. However, in this paper, we implement an image object tracking system for studio cameras based CMT algorithm. This is an optimal image tracking method because of combination of static and adaptive correspondences. The proposed system can be applied to an effective and robust image tracking system for continuous object tracking on the stage in real time.