Various location tracking sensors; such as GPS, INS, radar, and optical equipment; are used for tracking moving targets. In order to effectively track moving targets, it is necessary to develop an effective fusion method for these heterogeneous devices. There have been studies in which the estimated values of each sensors were regarded as different models and fused together, considering the different error characteristics of the sensors for the improvement of tracking performance using heterogeneous multi-sensor. However, the rate of errors for the estimated values of other sensors has increased, in that there has been a sharp increase in sensor errors and the attempts to change the estimated sensor values for the Sensor Probability could not be applied in real time. In this study, the Sensor Probability is obtained by comparing the RMSE (Root Mean Square Error) for the difference between the updated and measured values of the Kalman filter for each sensor. The process of substituting the new combined values for the Kalman filter input values for each sensor is excluded. There are improvements in both the real-time application of estimated sensor values, and the tracking performance for the areas in which the sensor performance has rapidly decreased. The proposed algorithm adds the error characteristic of each sensor as a conditional probability value, and ensures greater accuracy by performing the track fusion with the sensors with the most reliable performance. The trajectory of a UAV is generated in an experiment and a performance analysis is conducted with other fusion algorithms.
본 논문에서는 지능형 인식 기술인 RBFNNs 패턴분류기와 추적 기법인 Particle Filter를 융합한 다중 객체 추적 시스템을 설계한다. 여러 객체가 동시에 존재하는 상황에서 각각의 객체를 개별적으로 추적하기 위해 추적 기법에 인식 알고리즘을 추가하였다. 학습 데이터는 다양한 상황에서 정확한 인식 결과를 확인하기 위해 정면, 좌, 우측 데이터를 사용하였으며, 테스트 영상에서 검출된 얼굴 이미지를 테스트 데이터로 사용하였다. 추적 알고리즘인 Particle Filter를 사용하여 검출된 객체의 추적을 수행하며, 인식 결과를 바탕으로 다양한 객체에 대하여 개별적인 추적을 수행한다.
A location tracking sensor such as GPS, INS, Radar, and optical equipments is used in tracking Maneuvering Targets with a multi-sensor, and such systems are used to track, detect, and control UAV, guided missile, and spaceship. Until now, Most of the studies related to tracking Maneuvering Targets are on fusing multiple Radars, or adding a supplementary sensor to INS and GPS. However, A study is required to change the degree of application in fusions since the system property and error property are different from sensors. In this paper, we perform the error analysis of the sensor properties by adding a ground radar to GPS and INS for improving the tracking performance by multi-sensor fusion, and suggest the tracking algorithm that improves the precision and stability by changing the sensor probability of each sensor according to the error. For evaluation, we extract the altitude values in a simulation for the trajectory of UAV and apply the suggested algorithm to carry out the performance analysis. In this study, we change the weight of the evaluated values according to the degree of error between the navigation information of each sensor to improve the precision of navigation information, and made it possible to have a strong tracking which is not affected by external purposed environmental change and disturbance.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2003.06a
/
pp.234-237
/
2003
본 논문은 이동 통신 및 IEEE 802.lla WLAN에서 사용하고 있는 컨벌루셔널 부호의 복호기인 비터비 복호기의 SMU(Survivor Metric Unit)의 최적 메모리 제어에 관한 연구이다. 비터비 복호기기 구조는 크게 BMU, ACSU, SMU부로 구성된다. 이때 SMU부는 최적의 경로를 역추적 하여 최종 복호 데이터를 출력해 주는 블록으로, 역추적 길이에 따라 메모리 사용 양과 복호 성능이 좌우된다. 따라서 본 논문에서는 최적 메모리 제어 알고리즘을 제안함으로써 복호 속도의 향상과 메모리 사용 양을 줄이는 방법을 제안한다. 제안 알고리즘의 성능을 검증하기 위해 기존의 비터비 복호기와 역추적 길이에 따른 비터비 복호기의 성능을 실험을 통해 분석함으로써 제안 방법의 객관적인 성능을 분석한다.
Proceedings of the Korean Society of Disaster Information Conference
/
2015.11a
/
pp.96-99
/
2015
본 논문에서는 중복되지 않는 서로 다른 카메라의 영상을 활용한 동일 객체 판단 및 추적 기술에 대하여 소개한다. 영상분석에서 색상 정보는 가장 기본이 되는 중요한 정보라 할 수 있다. 특히 색상 정보를 이용하는 히스토그램은 일반적으로 추적, 인식 등에 많이 사용되고 있으나 이동 객체나 조도 변화 등에 따라 성능에 차이를 보인다. 이러한 문제점을 해결하고자 본 연구에서는 동일 객체 판단을 위해 대표적으로 사용되는 히스토그램 정합의 두 알고리즘(HSV 공간에서의 Histogram matching 방법과 RGB 공간에서의MCSHR 알고리즘) 결합을 통해 분할 히스토그램은 객체를 3조각으로 나누어 전체와 각각의 히스토그램을 구하며 MCSHR을 RGB공간이 아니 Hue 공간 히스토그램으로 변경하여 유사도를 도출 하였으며 조도 변화에 강인한 모델을 만들기 위해 Controlled equalization기법을 사용하여 원 영상의 히스토그램의 확률과 평활화한 히스토그램의 확률 융합을 시도 하였다. 해당 실험의 비교 결과 기존 HSV공간에서 Histogram matching을 통한 유사도 비교보다 12.9% 향상된 정합율의 결과를 보였다. 또한 영상 정보와 스마트 기기를 통한 인식 방법의 융합을 통해 영상 내에서 동일 객체 판단에 대한 추가 정보 제공에 대해 방법론 적인 부분을 제안 하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.328-332
/
2007
본연구에서는 센서의 융합을 통하여 환경을 인식하며, 주변환경에 대한 지식을 갱신, 학습할수 있는 방법론을 연구하며, 동적인 장애물의 감지및 움직임 예측에 기반한 지능적 회피 알고리즘과 AHP를 이용한 Navigation Strategy수정과 이동 로봇 스스로 최적의 결과를 낼수 있게 개선 시키는 알고리즘을 구현한다. 그와 더불어 AHP를 이용하여 Navigation Performance를 최대로 높일 수 있는 방향을로 진화시키는 알고리즘을 구현한다. 또한 부여된 임무수행을 위한 목표물 추적을 위한 비전 시스템에서의 대상체 추출및 인식 알고리즘을 개발하며 인간뇌의 환경인식 체계와 유사한 방식의 Map building기법을 연구한다.
본 고에서는 진화계산의 동작 원리와 이론적 기반에 대해 살펴봄으로써 그 원리를 이해하고 앞으로의 응용가능성에 대하여 고찰하고자 한다. 이를 위해 먼저 대부분의 진화 알고리즘에 공통되는 기본 구성 요소와 계산절차를 기술하고, 진화 알고리즘을 이용하여 특정문제를 풀고자 할 때 고려할 사항에 대하여 기술한다. 다음에는 간단한 응용 문제를 예로 들어 이 문제에 진화 알고리즘을 적용하고 그 동작과정을 추적함으로써 실제 적용에 있어서의 여러 가지 결정사항과 그 수행과정을 구체적으로 살펴본다. 또한 진화 알고리즘의 이론적 배경을 이해하기 위해 스키마와 빌딩 블록 그리고 스키마 정리에 대해서 알아본다. 마지막으로 진화계산방식과 다른 지능적 계산 기술들과의 융합 가능성의 예로서, 유전 프로그래밍에 의한 신경망 구조의 설계 및 학습에 대하여 살펴본다.
Journal of the Institute of Convergence Signal Processing
/
v.4
no.3
/
pp.1-6
/
2003
It is difficult to detect and to track the moving targets like tanks and diesel vehicles due to the variety of terrain and moving of targets. It is possible to be happened the aliasing conditions as the difficulty of antenna deployment in the complex environment like the battle fields. In this paper, we study the problem of detecting and tracking of moving targets which are emitting wideband signals under severe spatial aliasing conditions because of the sparse arrays. We developed a direction of arrival(DOA) estimation algorithm based on subband MUSIC(Multiple Signal Classification) method which produces high-resolution estimation. In this algorithm, the true bearings are invariant regardless of changes of frequency bands while the aliased false bearings vary. As a result, the proposed algorithm overcomes the aliasing effects and improves the localization performance in sparse passive arrays.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.5
/
pp.666-671
/
2008
In this paper, we propose a new method for tracking objects continously and successively based on fusion of region information, color information and motion template when multiple objects are occluded and splitted. For each frame, color template is updated and compared with the present object. The predicted region, dynamic template and color histogram are used to classify the objects. The vertical histogram of the silhouettes is analyzed to determine whether or not the foreground region contains multiple objects. The proposed method can recognize more correctly the objects to be tracked.
The Journal of the Convergence on Culture Technology
/
v.4
no.1
/
pp.291-297
/
2018
In this paper, we present an automatic image object tracking system for Studio cameras on the stage. For object tracking, we use the OpenCV-based Python program using PC, Raspberry Pi 3 and mobile devices. There are many methods of image object tracking such as mean-shift, CAMshift (Continuously Adaptive Mean shift), background modelling using GMM(Gaussian mixture model), template based detection using SURF(Speeded up robust features), CMT(Consensus-based Matching and Tracking) and TLD methods. CAMshift algorithm is very efficient for real-time tracking because of its fast and robust performance. However, in this paper, we implement an image object tracking system for studio cameras based CMT algorithm. This is an optimal image tracking method because of combination of static and adaptive correspondences. The proposed system can be applied to an effective and robust image tracking system for continuous object tracking on the stage in real time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.