• Title/Summary/Keyword: 추비

Search Result 188, Processing Time 0.029 seconds

Effects of Application Method of Pig Compost and Liquid Pig Manure on Yield of Whole Crop Barley (Hordeum vulgare L.) and Chemical Properties of Soil in Gyehwa Reclaimed Land (계화간척지에서 돈분뇨 퇴.액비 시용이 청보리 (Hordeum vulgare L.) 수량 및 토양화학성에 미치는 영향)

  • Lee, Sang-Bok;Cho, Kwang-Min;Baik, Nam-Hyun;Lee, Jung-Jun;Oh, Young-Jin;Park, Tail-Il;Kim, Kee-Jong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.353-360
    • /
    • 2011
  • In order to develop the application method of pig compost (PC) and liquid manure (LM) for whole crop barley cultivation, experiments were conducted at Munpo series (coarse loamy, mixed, nonacid, mesic family of Typic Fluvaquents) soil in Gyehwa-reclaimed land, six plots, a LM applied rate as N% ; non-application, chemical fertilizer (CF)100, 100, 50+50, 50+CF50 and (PC30+LM40)+LM50 as basal and additional fertilizer. $NO_3^-$-N content in soil was decreased as along with the growth of plant, highest in LM100% as basal fertilization at early growth stage and highest in (PC30%+LM40%)+LM40% and CF100% at last growth stage. Amount of $NO_3^-$-N and $NH_4^+$-N in soil was high in (PC30%+LM40%)+LM40% and CF100% of top soil but in subsoil significant difference was little in all treatment. Amount of OM, $A_V.P_2O_5$, T-N, exchangeable Ca and Na in soil was higher (PC30%+LM40%)+LM40% than non-application after harvest. Amount of nutrient uptake in plant was higher in CF100% and split application of LM than LM 100% application. Nitrogen utilization rate was in the order of CF100% >LM50%+LM50%=LM50%+CF50%>(PC30%+LM40%)+LM40% >LM100%. The yield of whole crop barley in (PC30%+LM40%)+LM40% and CF100% was 3.2 times more than in non-application ($309kg\;10a^{-1}$). Feed values such as crude protein and TDN was increased 1.0% ~ 1.4% in LM as split application than basal 100% treatment. Accordingly, in order to increase yield of a whole crop barley with application PC+LM in reclaimed land treat split application rather than to treat LM 100% into the land.

Assessment of an Optimum Biochar Application Rate for Tomato(Solanum lycopersicum L.) Cultivation (토마토 재배를 위한 바이오차 최적시용 비율 평가)

  • Park, Do-Gyun;Hong, Seung-Gil;Jang, Eunsuk;Shin, Joung-Du
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.39-48
    • /
    • 2019
  • Objective of this study was to evaluate an optimum biochar application rate and estimate the carbon sequestration based on the soil chemical properties and growth responses for biochar application during tomatoes cultivation. The treatments consisted of control as recommended application rates of fertilizers, 0.01%, 0.03%, 0.05%, and 0.07% of biochar application(w/w, biochar:soil). For effects of soil chemical properties, the $NO_3-N$contents in the soil were peaked at 9 days after transplanting. But there was not significant difference(p>0.05) among the treatments during cultivation periods. However, $NH_4-N$ contents in the biochar treatment were lower than the control until 14 days of transplanting. $P_2O_5$ contents in the biochar treatments were lower than that of the control until 19 days after transplanting except 0.01% of biochar application plot. $K_2O$ contents in soils treated with 0.01% and 0.03% of biochar were higher until 6 days after transplanting than that in the control. For N use efficiency of biochar application, it was observed that the 0.05% biochar application plot was highest among the treatments. The highest carbon sequestration was estimated at $2.83mg\;kg^{-1}$ for 0.03% of biochar application. However, it is considered that the optimum biochar application rate was 0.05% for tomato cultivation, considering the growth characteristics and yield components.

Effect of Horse Manure Compost Application Levels on the Forage Productivity of Italian Ryegrass and Volcanic Ash Soil Characteristics (마분 퇴비 시용 수준이 이탈리안 라이그라스의 조사료 생산성과 화산회토양 성분에 미치는 영향)

  • Yoo, Ji-Hyun;Park, Nam-Geon;Hwang, Won-Uk;Woo, Jae-Hoon;Ji, Hee-Chung;Yang, Byoung-Chul
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.2
    • /
    • pp.96-101
    • /
    • 2021
  • This study was conducted to determine the effect of horse manure compost application on Italian ryegrass (IRG) yield and volcanic ash soil characteristics. Because the number of horses in Korea is growing, the amount of horse manure is growing. Jeju island, where about 55 % of the horses live, is composed of volcanic ash soil. This study was conducted for about 7 months. Sowing was conducted on October 2019. Harvesting was conducted at heading stage(2020.5.). Five treatments were established based on the horse manure compost composition. These were 100 % chemical fertilizer (CF), the combination of 50 % horse manure and 50 % chemical fertilizer (combination), horse manure with 50 % nitrogen (HM 50 %), horse manure with 100 % nitrogen (HM 100 %), and horse manure with 150 % nitrogen (HM 150 %). The plant height and dry matter yield were investigated to determine the forage yield and the soil characteristics of pH, total nitrogen, available phosphate, and organic matter were analyzed. The plant heights in the CF, combination, and HM 150 % treatments were 147.8 cm, 144.3 cm, and 147.1 cm respectively (Table 2). Dry matter yield in the CF treatment was about 23,807 kg/ha, which tended to be the highest dry matter yield. HM 150 % and the combination treatment were about 18,804 and 18,455 kg/ha, respectively, which tended to be the highest dry matter yield of the treatments amended with horse manure compost. The dry matter yield of the HM 100 % and HM 50 % treatments was about 15,801 kg/ha and 14,446 kg/ha, respectively (Table 2). The pH of the surface soil tended to increase after the experiment. The soil pH of the HM 150 % treatment was significantly higher than the soil pH of the other treatments. The pH was affected by the amount of horse manure compost, with a pH of 8.1. The available phosphate in the treatments in which horse manure compost was added was higher than the available phosphate in the CF treatment. And the available phosphate in the HM 150 % treatment was significantly higher than the available phosphate in the other treatments (p < 0.05)(Table 3). These results suggest that 50 % horse manure should be applied to IRG as the basal fertilizer and the remaining 50 % should be chemical fertilizer as the top fertilizer. This can provide the proper IRG dry matter yield with less effect on volcanic ash soil.

Dressing Effect of Phosphorus Fetilizer on the Growth of Soil Improving Species (비료목생장(肥料木生長)에 미치는 인산비료(燐酸肥料)의 시비효과(施肥效果))

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.45 no.1
    • /
    • pp.26-36
    • /
    • 1979
  • Through several trials that has done for making the fertilizing-counter plan on the soil improving species, some results have been got as follows; 1. In the non-phosphorus dressing plots soil improving species have very poor survial ratio and show us to be died step by step. It may be resons that root can not make the nodule in case of non-phosphorus dressing and so tree could not absorb the nitrogen nutrient fixed by the nodule. And root competition with the weedy speces for utilizing the nutrient and oxygen in the soil could be reasons when planting in the heavy weedy rooting site. 2. Triple super phosphate, Fused Mg Phosphate and Fused super phosphate have showed the remarkable effects on the growth of soil improving species within 3rd year after planting. But Koreaan tablet fertilizer(9-12-4) for forest purpose have reacted considerably lower effect in comparision with the above powder and grain type phosphorous fertilizer. 3. In case of tablet type fertilizer tree root will have very little phosphorus absorbing surface because phosphorus can be utilized only from the tablet surface and root can not penetrate into the tablet. This my be reson to show the poor dressing reaction of tablet fertilizer but tablet fertilizer has a possibility to be utilized during long years as a sympton in photo 6. So tablet fertilizer can have a recommendation to dress much fertilizer at p]anting year and then tree root can get much more chance for absorbing the phosphorus that could keep the high survival and for utilizing it during many years without after dressing. 4. The granurar and powder type phosphate can develop the dense root mat like photo 8 because of giving the large surface for absorbing the phosphorus and weedy root can approch to the nodule for taking the nitrogen element. So this type seems to present better effect than tablet type to control the soil movement, stem weight as 200g per meter(l meter long${\times}$0.1m width). When added the lime any effect could not be found and rather give the negative effect. So Lespedeza seed sowing and phosphorus dressing system seems us to be very reasonable method for covering the raw material of basket making, fodder and fuel wood supply. 7. Fused Mg phosphate and Fused super phosphate are good fertilizer to the soil improving species and dressing more than 30g per seedling can be recommendable amount. 5. In the unproductive and dry soil with phosphorus fertilizer Robinia pseudoacacia and Alnus firnui can grow more than 2.3m in height at 3rd year and Alnus inokumae have the rapid height growth that is more than 1.8m at 2nd year. Depending on the growth situation like the above example minirotated management has possibilities and rapid covering of erosed land can be done with the soil improving species and phosphorus fertilizer. 6. In the Lespedeza sowing plot with 40g Fused Mg phosphate dressing per meter in the eroded and unproductive forest soil Lespedeza have completely covered this poor land and produced the green.

  • PDF

Field Survey on Pig Slurry Utilization for Crop Cultivation in the Agricultural Farm (양돈분뇨 액비를 이용한 경종농가의 작물재배 실태조사)

  • Choi, D.Y.;Noh, J.S.;Lee, S.C.;Kim, H.N.;Ahn, K.J.;Cho, I.K.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.3
    • /
    • pp.141-150
    • /
    • 2006
  • To optimise the efficient use of nutrients in pig slurry is to cultivate friendly environmental crops. This field survey is to investigate the actual conditions of pig slurry utilization for cultivation of crops in the agricultural farm, based on the survey for 407 selected farms in 9 provinces included 78 counties in Korea. The results obtained in this survey were summarized as follow ; The motive which came to use pig slurry in the agricultural farm were production of friendly environmental crops (29.7%), economy of chemical fertilizer (25.1%), spontaneously (19.2%), inducement of neighboring farmhouse (16.0%), increase of soil fertility (9.3%), and the others (0.7%), respectively. The proportions of pig slurry application land were 56.5% for.ice paddy, 22.6% for dry field, 13.3% for orchard, 4.4% for controlled agriculture and 3.2% for other, respectively. The number of times of pig slurry utilization per year were once (48.9%), twice (31.9%), thrice (14.0%), and the others (5.2%), respectively. The controversial points of pig slurry utilization were malodor (54.1%), insufficiency of spread equipment (22.1%), inconvenience (14.5%), over application (3.4%), over cost (2.9%), heavy metal (1.7%), sanitation (1.0%) and the other (0.2%), respectively. The results indicated that pig slurry could be used as fertilizer source of friendly environmental crops, but further studies are needed to determine the application method and value of the pig slurry for crop cultivation.

  • PDF

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF

Rationalization of Fertilizing and Development of Fetilizer (시비(施肥)의 합리화(合理化)와 비종개발(肥種開發))

  • Lim, Sun-Uk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.1
    • /
    • pp.49-50
    • /
    • 1982
  • The objective of this paper is to review the changes in fertilizer use pattern and to discuss some aspects of the fertilizer development in Korea. Fertilizer consumption in Korea have steadily increased to triple the application rates of N, P and K during the 15 years from 1965 to 1980, and Korea became one of the countries which apply fertilizers at the highest rate. The ratio of N: $P_2O_5$: $K_2O$ in fertilizer consumption changed from 55.4 : 31.4 : 13.1 in 1965 to 54.0 : 23.8 : 22.2 in 1980. It can be said that Korean farmers practise a balanced fertilization at least in view of fertilizer consumption as compared to other developing countries. However, differences in soil properties, crops, and climate varying as region were not reflected on fertilization. In the technological development of fertilizer, the chemical form and composition of the fertilizer as well as the suitability to the specific crops must be taken into consideration for the efficient use of fertilizers. Although organic fertilizers and manure are accepted as minor element suppliers, it is necessary to add minor elements into chemical fertilizers on the industrial process. Industrial waste may be used for the agricultural production as a measure of pollution control providing careful study on the waste.

  • PDF

Studies on the Productivity of Individual Leaf Blade of Paddy Rice (수도의엽신별 생육효과에 관한 연구)

  • Dong-Sam Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.18
    • /
    • pp.1-27
    • /
    • 1975
  • Experiment I: A field experiment was conducted in an attempt to find the effect of top-dressing at heading time in different levels of nitrogen application and of different positioned leaf blades formed by the treatment of leaf defoliation at heading time on the ripening and the yield of rice. The results obtained are as follows: 1. Average number of ears per hill and average number of grains per ear in different levels of nitrogen application were increased as the amount of nitrogen applied was increased. while the rate of ripened grains the yield of rough rice and the weight of 1, 000 kernels of brown rice were decreased respectively as the amount of nitrogen applied was increased. 2. The rate of ripened grains and the weight of 1.000 kernels of brown rice in different levels of nitrogen, top-dressing at heading time were larger than those in control and increased. The yield of rough rice although statistically significant differences were not recognized, were numerically increased. 3. The rate of ripened grains, the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling in different treatments of leaf defoliation were remarkably decreased as the degree of leaf-defoliation became larger. 4. The rate of ripened grains, the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling in different combinations of number of remained leaves positioned differently, formed the order of $L_1(flag leaf)>L_2>L_3>L_4$ when only one leaf blade was remained, and were increased as the positions of leaves were higher when two leaf blades. were, remained. 5. In case of decrease in the number of leaf blades positioned differently, by the treatment of leaf. defoliation, rate of ripened grains, the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling were increased as the area of remained leaves became larger and the nitrogen content of a leaf blade was increased. 6. There was a tendency that the increase in the amount of fertilizer application made the rate of ripened grains and the weight of 1, 000 kernels of brown rice reduced in any number of remained leaf blades, but the application of top-dressing at heading. time resulted in the reverse tendency. The yield of rough rice showed a tendency to be increased as the amount of basal dressing and top-dressing increased and for the application of top-dressing at heading time, the yield of rough rice was less at the smaller number of those. 7. The productivity effect of the rate of ripened grains and the yield of brown rice covered by leaf blades was more than 50 per cent and that of the. weight of 1, 000 kernels of brown rice was not more than 1.0 percent. As the amount of nitrogen application increased the. effect of leaf blades on the rate of ripened. grains and the weight of 1, 000 kernels of brown rice was increased. The effect of leaf blades on the weight of brown rice was increased as the amount of basal dressing-application, but the effect was decreased as the amount of top-dressing at heading time increased, 8. The productivity effects of different positioned leaf blades on the rate of ripened grains, the yield of rough rice and the weight of 1, 000 kernels of brown rice were in order of $L_1(flag leaf)>L_2>L_3>L_4$ the productivity effects of $L_1$ and $L_2$ had a tendency to be increased as the amount of nitrogen applied was increased. Experiment II: A field experiment was done in order to disclose the effect of the time of nitrogen application on yield component and the effect of different positioned leaves formed by leaf defoliation at heading time on the rate of ripened grains and the yield of rice. The results obtained are as follows: 1. Average number of ears per hill was increased in the treatment of nitrogen application from basal dressing to 22 days before heading and in the treatment of application distributed weekly. Number of grains was increased in the treatment of nitrogen application from 36 days to 15 days before heading. The rate of ripened grains was, lower in the treatment of nitrogen application from top-dressing to 15 days before heading than in that of non-application, was higher in the treatment of nitrogen application within 8 days before heading, and was the lowest in that of application 29 days before heading. The yield of rough rice was the highest in the treatment of nitrogen application from 29 days to 22 days before heading. The weight of 1, 000 kernels of brown rice was a little high in the treatment of application from 29 days to 8 days before heading. 2. The rate of ripened grains the yield of rough rice, the weight of 1, 000 kernels of brown rice and the rate of hulling in different treatments of leaf defoliation were remarkably decreased as the degree of leaf defoliation got larger and there were highly significant differences among treatments. There was also a recognized interaction between the time of nitrogen application and leaf defoliation. 3. In relation to the rate of ripened grains, the weight of 1. 000 kernels of brown rice and the rate of hulling in different numbers of remained leaves positioned differently and their combinations, the yield components were in order of $L_1(flag leaf)>L_2>L_3>L_4$ when only one leaf was remained, which indicated that the components were increased as the leaf position got higher. When two laves were remained, the rate of ripened grains, the yield of rough rice and rate of hulling were high in case of the combinations of upper positioned leaves, and the increase in the weight of 1, 000 kernels of brown rice appeared to be affected most]y by flag leaf. When three leaf blades were remained similarly the components were increased with the combination of upper positioned leaf blades. 4. In case of decreased different positioned leaf blades by treatment of leaf defoliation, there was a significant positive regression between the leaf area, the dry matter weight of leaf blades and the nitrogen contents of leaf blades, and rate of ripened grains and the yield of rough rice, but there was no constant tendency between the former components and the weight of 1. 000 kernels of brown rice. 5. The closer the time of fertilizer application to heading time, the more the rate of ripened grains and the weight of 1, 000 kernels was decreased by defoliation, and the less were the remained leaf blades, the more remarkable was the tendency. The rate of ripened grains and the weight of 1. 000 kernels was increased by the top-dressing after heading time as the number of remained leaf blades. When the number of remained leaf blades was small the yield of rough rice was increased as the time of fertilizer application was closer to heading time. 6. Discussing the productivity effects of different organs in different times of nitrogen application, the productivity effect of a leaf blade on the rate of ripened grains was higher as the time of nitrogen application got later, and in the treatment of non-fertilization the productivity effect of a leaf blade and that of culm were the same. In the productivity effect on the yield of brown rice, the effect of culm covered more than 50 percent independently on the time of nitrogen application, and the tendency was larger in the treatment of non-fertilizer. The productivity effect of culm on the weight of 1. 000 kernels of brown rice was more than 90 percent, and the productivity effect of a leaf blade was increased as the time of application got later. 7. The productivity effect of a leaf blade in different positions on the rate of ripened grains, the yield of rough rice and the weight of 1, 000 kernels of brown rice had a tendency to be increased as the time of application got later and as the position of leaf blades got higher. In the treatment of weekly application through the entire growing period, the rate of ripened grains and the yield of rough rice were affected by flag leaf and the second leaf at the same level, the but the weight of 1, 000 kernels of brown rice was affected by flag leaf with more than 60 percent of the yield of total leaves.

  • PDF