• 제목/요약/키워드: 추론 규칙

검색결과 615건 처리시간 0.028초

메타 규칙과 번역의 혼용을 통한 규칙엔진 기반 OWL 추론 엔진의 성능 향상 방법 (Efficient Rule-based OWL Reasoning by Combing Meta Rules and Translation)

  • 장민수;손주찬;조영조
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (D)
    • /
    • pp.214-219
    • /
    • 2007
  • 생성 규칙(Production Rule)과 이를 기반으로 하는 규칙 엔진(Rule Engine)을 기반으로 한 OWL 추론 엔진은 메타 규칙((Meta Rule)에 의존해 왔다. 메타 규칙은 OWL의 의미론 (Semantics)을 표현하기 용이하여 보다 손쉽게 OWL 추론 엔진을 구현할 수 있다는 장점을 제공하였으나 OWL 추론 성능에 있어 추론 속도와 대용량 온톨로지 처리 측면에서 모두 만족할 만한 성과를 얻지 못하였다. 본 논문은 DLP(Description Logic Programming)의 번역 접근법을 기반으로 한 번역 규칙(Translation Rules)을 메타 규칙과 혼용하는 OWL 추론 기법을 소개한다. LUBM 벤치마크를 통해 이 기법이 메타 규칙만을 이용했을 때 보다 100% 이상 추론 성능을 향상시켰을 뿐 아니라 메모리 사용량도 대폭 축소시켰음을 확인할 수 있었다. 또한, 번역을 통해 제한없는 차수 제약(Cardinality Restriction) 관련 추론을 지원하는 등 보다 넓은 범위의 OWL 추론을 지원할 수 있다.

  • PDF

진단 시스템을 위한 혼합형 추론 엔진 (Hybridlnference Engine for System Diagnosis)

  • 김진평;이길재;김문현
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2005년도 춘계학술대회
    • /
    • pp.171-176
    • /
    • 2005
  • 본 논문에서는 진단시스템의 추론성능을 향상시키기 위한 방법으로서, 사례 기반 추론을 통해서 규칙 기반 추론의 단점을 보완하여 성능을 향상시키는 혼합형 추론 모델을 제안한다. 본 모델의 특징은 규칙 기반 추론의 확장성 문제와 규칙화 할 수 없는 예외적인 상황에 대한 문제점을 사례 기반 추론에서 사례로 저장하여 규칙 기반 추론의 단점을 보완하는데 있다. 이런 두 모델의 문제점을 해결하는 과정은 첫째로, 문제에 따라 규칙기반추론 모듈의 베이스를 통해서 적절한 규칙을 적용 후 추론을 적용하여 근접한 해를 얻어낸다. 두 번째로, 규칙베이스에 저장되어 있지 않은 문제에 대해서는 사례 라이브러리를 검색하고 유사성 검사를 통해서 저장된 사례를 찾아 입력된 사례에 적용하여 문제를 해결한다. 셋째로, 해결된 문제에 대해서 수정작업을 통해 사례 라이브러리를 확장한다. 이와 같이 세 과정을 통해 본 논문에서 제안하는 방법론의 성과를 측정하기 위하여 정비 메뉴얼을 규칙화하여 규칙베이스를 구축하였고 전문가들의 경험적인 지식에 대해서는 사례라이브러리로 구축하였다. 또한 지식베이스를 통해서 진단을 수행하고 해결된 문제에 대해서 정확도 검사를 통해 진단의 정확성을 측정하여 혼합형추론엔진의 성능을 검증하였다.

  • PDF

Bode 함수의 미분 및 전개를 이용한 규칙과 사례의 통합 추론 (An Integrating Reasoning of Rule and Case base Using Derivatives and Expansions of Boolean Functions)

  • 박지연;김국보;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.285-292
    • /
    • 1995
  • 최근 규칙베이스 추론과 사례베이스 추론의 통합화에 의한 추론이 다양하게 시도되 고 있다. 본 논문에서는 규칙과 사례를 동일한 형태로 표현하고, 규칙베이스와 사례베이스를 통합한 새로운 통합 추론 방법을 제안한다. 지식은 논리의 기하학적 모델을 이용하여 정보 를 논리적으로 해석하며, 동일한 형태로 표현된 규칙과 사례를 Boole 함수의 미분 및 전개 방법을 이용하여 추론하는 방법을 제안하고 응용예를 통하여 확인하다.

  • PDF

선박에서 화재탐지를 위한 규칙 및 사례기반 추론의 통합 (Combining Rule-based and Case-based Reasoning for Fire Detection in a ship)

  • 현우석;김용기
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.303-306
    • /
    • 2000
  • 본 논문에서는 선박에서 화재탐지를 위해서 규칙 기반 추론과 사례 기반 추론을 통합하는 방법에 대해서 논의하였다. 규칙은 어떤 영역에서 광범위한 경향을 표현하는데 적합하며 사례는 규칙에서 예외적인 상황을 다루는데 적합하다는 점에서 규칙과 사례는 상호 보완적이라 할 수 있다. 즉 어떤 행동이 충분히 반복되면 자연스럽게 규칙이 되며, 잘 확립된 규칙이 있다면 사례를 먼저 추론할 필요가 없다. 그러나 규칙이 실패하게 되면 실패를 만회하기 위해서 사례를 생성하는 것이 하나의 대안이 될 수 있다. 본 논문에서는 일반적인 화재탐지 지식은 규칙으로 표현하고, 예외적인 화재탐지 지식은 사례로 표현함으로써 규칙과 사례가 서로 보완적인 역할을 할 수 있는 통합 방법을 제안하였다. 또한 기존의 규칙 기반 FFES(Fire Fighting Expert System)와 사례기반 추론에 의해 확장된 C-FFES(Combined-Fire Fighting Expert System)를 비교를 통해, 제안한 접근 방법이 화재 탐지율을 향상시킴을 보였다.

  • PDF

퍼지추론에서 러프집합을 이용한 감성 데이터의 분류 (Classification of emotion data using rough set on fuzzy inference)

  • 손창식;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.145-148
    • /
    • 2004
  • 규칙 기반 추론 시스템에서 규칙의 속성 감축은 다양한 방법으로 제안되어 왔다. 규칙의 속성 감축은 퍼지 추론 시스템을 구현하는데 있어서 처리 시간을 단축시킬 수 있으나 규칙의 종속성 및 상관성을 고려하지 않을 경우 예상하지 못한 추론 결과를 얻을 수 있다. 따라서, 본 논문에서는 복합속성을 가진 규칙의 속성 감축과 상관성을 고려하기 위하여 러프집합의 특성 중 식별가능 행렬과 식별가능 함수를 이용하였다. 그리고 속성 감축에 사용된 규칙은 복합속성(composite attribute)을 가지는 감성 데이터를 이용하였다.

  • PDF

관능평가를 위한 효율적인 퍼지추론 규칙의 설계 (Designing efficient fuzzy inference rules for the sensory evaluation)

  • 이진춘
    • 한국산업정보학회논문지
    • /
    • 제6권1호
    • /
    • pp.61-69
    • /
    • 2001
  • 본 연구는 관능검사에서 얻은 결과로 평가규칙을 설계하고 이를 이용하여 추후의 관능평가에 응용할 수 있는 방법을 제안함에 있어서, 퍼지추론의 규칙을 효율적으로 설계하는 것에 관련된 것이다. 퍼지추론 규칙의 수는 규칙의 전건부의 구조와 파라미터를 설계함에 있어서 퍼지분할의 수에 따라 결정되는데, 분할의 수가 많다고 해서 최적은 아니므로 효율적으로 규칙의 수를 축소하는 것이 규칙을 응용할 때의 효율성을 제고하는 동시에 실무에 응용할 때 추론엔진의 속도를 높일 수 있다. 이를 위해 본 연구에서는 선행연구에서 제시된 사례를 이용하여 추론규칙의 수를 축소하여도 대등한 결과를 얻을 수 있음을 수치예를 통하여 증명하였다. 본 연구의 결과는 향후 관능검사를 이용하는 다른 분야에도 유효하게 응용될 수 있을 것이다.

  • PDF

감성제품 설계를 위한 퍼지칼라선택시스템의 개발 (Development of a fuzzy color selection system for sensible product design)

  • 박재희;이남식
    • 대한인간공학회:학술대회논문집
    • /
    • 대한인간공학회 1993년도 추계학술대회논문집
    • /
    • pp.236-242
    • /
    • 1993
  • 소비자들이 원하는 제품의 감성을 언어로 표현하여 줄 때, 이를 퍼지추론하여 칼라를 선택해주는 시스템을 개발하였다. 시스템은 감성언어입력, 감성언어퍼지화, 칼라추론, 추론규칙, 출력 등 모두 5개 의 모듈로 구성되어 있다. 시스템은 감성언어를 색상, 채도, 명도로 변환시킨 후 이를 다시 R, G, B 값으로 변환시키게 된다. 이때, 색상, 채도, 명도로의 변환에는 퍼지화규칙이 사용되게 되며, R,G,B 값으로의 변환 에는 칼라추론규칙이 사용되게 된다. 퍼지화규칙을 만들기 위해 S.D.(의미미분)법에 의한 감성언어의 요인 분석을 실시하였으며, 동시에 문헌조사를 통해 얻은 칼라와 관련한 감성정보를 if-then 규칙 형태로 시스템에 구현하였다.

  • PDF

Medusa: 시맨틱 웹 규칙 언어 처리를 위한 확장형 서술 논리 추론기 (Medusa: An Extended DL-Reasoner for SWRL-enabled Ontologies)

  • 김제민;박영택
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권5호
    • /
    • pp.411-419
    • /
    • 2009
  • 현재 온톨로지의 논리적 오류와 개념들 간의 포함 관계를 탐지하는 추론 엔진들이 소개되고 있다. 대부분의 서술 논리 기반 온톨로지 추론 엔진은 태블로 알고리즘을 기반으로 구축되었다. 그러나 태블로 알고리즘 기반의 온톨로지 추론은 인스턴스 추론에 있어서 한계를 보인다. 이에 본 논문에서는 Medusa 시스템을 제안한다. Medusa는 서술 논리로 표현된 온톨로지의 정형화된 의미를 기반으로 시맨틱 웹 규칙 언어(SWRL)를 지원하는 확장된 서술 논리 추론 엔진이다. 대부분의 서술 논리 기반 추론 엔진은 효과적으로 온톨로지 스키마 모델을 추론하지만 인스턴스(Assertional Knowledge) 정보를 추론하기 위한 규칙 기반 추론 기능을 제공하지는 않는다. 이러한 문제를 해결하기 위해서 Medusa는 서술 논리의 추론 방식과 규칙 기반 추론 방식을 동시에 사용한다. 본 논문에서 설명하는 Medusa의 프로토타입은 $Prot{\acute{e}}g{\acute{e}}$ API[1]를 사용하여 시맨틱 웹 규칙 언어 추론 엔진과 서술 논리 추론 엔진간의 상호작용을 제어한다.

RDF 스키마 함의 규칙 적용 순서를 이용한 RDFS 추론 엔진의 최적화 (An Optimization Technique for RDFS Inference the Applied Order of RDF Schema Entailment Rules)

  • 김기성;유상원;이태휘;김형주
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제33권2호
    • /
    • pp.151-162
    • /
    • 2006
  • W3C의 권고안인 RDF Semantics는 RDFS 추론에 사용할 RDFS 함의 규칙을 제안하였다. 널리 사용되고 있는 RDF 저장소 시스템인 Sesame는 전방향 추론 방식을 사용하여 RDBMS 기반 RDFS 추론을 지원한다. Sesame의 전방향 추론 전략을 사용할 때에는 데이타 저장 시에 추론을 하기 때문에 추론 성능이 데이타 저장 성능에 영향을 미친다. 이런 문제점을 개선하기 위해 본 논문에서는 RDBMS 기반의 전방향 추론 엔진의 성능 향상을 위한 RDFS 함의 규칙 적용 순서를 제안한다. 제안한 규칙 적용 순서는 추론 과정을 대부분의 경우 추론 과정의 반복 없이 한번에 끝낼 수 있도록 하며 완벽한 추론 결과를 보장한다. 또한 앞서 적용한 규칙에 의해 생성된 결과를 추측할 수 있어 추론 과정에서 중복된 결과 생성을 줄일 수 있다. 본 논문에서는 실제 사용하는 RDF 데이타들을 사용하여 Sesame와의 추론 성능을 비교하며 제안한 방법이 RDFS 추론 성능을 향상시킬 수 있음을 보인다.

우선순위 디폴트 규칙 시스템의 의미론 (Semantics of Prioritized Default Rule System)

  • 유희준;배민오;최진영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.241-243
    • /
    • 2003
  • 지능형 정보 에이전트 시스템에서 사용되는 디폴트 규칙 시스템의 결론 집합을 생성하기 위한 추론 과정에서 불일치를 발생할 수 있는 새로운 오순 상황을 제시하고, 이를 해결할 수 있는 새로운 의미론을 정의한다. 확장 논리 프로그램은 추론된 결과 집합에서 같은 심벌이 양의 부호와 음의 부호를 동시에 가진 형태로 존재하는 경우에 모순이 발생하게 된다. 막장 논리 프로그램에 기반을 둔 디폴트 추론 시스템에서도 이런 모순을 가지게 되며, 이 문제를 해결하기 위한 방법이 정의되어 있다. 하지만, 비단조 추론을 하는 디폴트 규칙 시스템에서는 이런 문제 외에도 모순이 발생하게 된다. 하지만, 기존의 연구에서는 이러한 문제를 해결하는 방범이 고려되지 않았다. 최근에 들어서 디폴트 규칙 시스템은 지능형 에이전트에 내재되면서 에이전트간의 협상과 업데이트 등에 많이 사용되고 있다. 만일, 에이전트 내에서 규칙 시스템이 모순 상황이 발생하는 경우 예기치 않은 손실이 발생하게 된다. 따라서 결론 집합을 일관성 있게 추론하는 것은 지능형 에이전트 시스템의 신뢰성을 높이기 위해서 반드시 필요한 사항이다. 더욱이 에이전트 시스템의 사용분야가 지속적으로 늘어나는 상황에서 기존에 제안된 모순 이외에 각 분야에서 특성에 따라서 발생 가능한 모순이 발생하게 되며, 이 문제를 해결하는 것이 중요한 문제이다. 본 논문에서는 기존에 정의된 모순 외에 발생 가능한 문제점을 제시하고 이를 해결하기 위한 새로운 규칙 시스템의 의미론을 정의하였다.

  • PDF