• Title/Summary/Keyword: 추력 리플 Iron core

Search Result 9, Processing Time 0.028 seconds

Development of Iron Core type Linear Motor for Machine Tool(2) (공작기계용 철심형 리니어모터 기술개발(2))

  • 정재한;박재완;박재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.82-85
    • /
    • 2002
  • Due to various advantages over the conventional linear motion device such as ball-screw, linear motors have been used in wide variety of industrial applications for years. Driven by increased demand for precision machine tools, the importance of high positioning accuracy, high stiffness and high thrust are greatly increasing. In this paper, thrust ripple, detent force and thermal behavior are considered for the development of high performance linear motor whose thrust is up to 4, 000N. This paper presents a comprehensive study for an iron core type linear motor characteristics that include the influence of PM position on thrust thrust ripple by detent farce and motor dynamics as well.

  • PDF

Development of Iron Core type Linear Motor for Machine Tool (공작기계용 철심형 니니어모터 기술개발)

  • 정재한;박재완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.33-36
    • /
    • 1997
  • The merits of linear motor are high speed, high acceleration and goad positioning accuracy. In addition, Linear motor for high quality machme tool call for high thrust, high stiffness. In using linear motor we also consider thrust ripple, detent force and thermal behavior. In this research, Iron core type single sided linear DC motor(LDM) is designed which thrust is 6,000 N. To accomplish this design, Various research is hlfilled l~ke the relation of thrust and permanent magnet position angle, the variation of detent force and thrust ripple, dynamic characteristics, and so on.

  • PDF

Development of Iron Core Type Linear Motor for Machine Tool (공작기계용 철심형 리피어모터 기술 개발)

  • Joung, Jae-Han;Park, Jae-Wan;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.82-89
    • /
    • 2002
  • There is an intensifying demand fur linear motors in vast range of industry applications such as in factory automation and semi-conductor manufacturing equipment due to their high positioning accuracy, high static stiffness, high thrust and excellent dynamic characteristics. This paper presents an iron core type linear motor for machine tool whose rated thrust is up to 6000N. For electromagnetic field and dynamic analysis, finite element method (FEM) is implemented to predict motor performance. Various design parameters are considered to reduce thrust ripple and to improve dynamic performance with the least sacrifice of effective thrust. Experimental results on thrust and static stiffness are also followed to confirmed the validity of the analysis.

Development of High Thrust Linear Motor for Machine Tool II (공작기계용 고출격 리니어모터 개발 II)

  • 정재한;박재한;정시욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.347-353
    • /
    • 2004
  • Due to various advantages over the conventional linear motion device such as ball-screw, linear motors have been used in wide variety of industrial applications for years. Driven by increased demand for precision machine tools, the importance of high positioning accuracy, high stiffness and high thrust are greatly increasing. The merits of linear motor are high speed high acceleration and good positioning accuracy. In addiction, Linear motor for high qualify machine tool call for high thrust, high stiffness. In this paper, thrust ripple, detent force and thermal behavior are considered for the development of high performance linear motor whose thrust is up to 1,900N. This paper presents a comprehensive study for an iron core type linear motor characteristics that include the influence of PM position on thrust ripple by detent force and motor dynamics as well.

  • PDF

Development of High Thrust Linear Motor for Machine Tool (공작기계용 고추력 리니어모터 개발)

  • 정재한;박재완;박재한;정시욱
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.423-428
    • /
    • 2002
  • Due to various advantages over the conventional linear motion device such as ball-screw, linear motors have been used in wide variety of industrial applications for years. Driven by increased demand for precision machine tools, the importance of high positioning accuracy, high stiffness and high thrust are greatly increasing. The merits of linear motor are high speed, high acceleration and good positioning accurcy. In addition, Linear motor for high quality machine tool call for high thrust, high stiffness. In this paper, thrust ripple, detent force and thermal behavior are considered for the development of high performance linear motor whose thrust is up to 4,000N. This paper presents a comprehensive study for an iron core type linear motor characteristics that include the influence of PM position on thrust, thrust ripple by detent force and motor dynamics as well.

  • PDF

Study for Improvement of Tracking Accuracy of the Feeding System with Iron Core Type Linear DC Motor by Neural Network Control (신경망 제어에 의한 철심형 리니어모터의 추종성 향상 연구)

  • 송창규;김경호;정재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.73-77
    • /
    • 2002
  • The requirements for higher productivity call for high speed of the machine tool axes. Iron core type linear DC motor is growly accepted far a viable candidate of the high speed machine tool feed unit. LDM, however, has inherent disturbance force components: cogging and force ripple. These disturbance force directly affects tracking accuracy of the carrage and must be eliminated or reduced. Reducing motor ripple, this paper adapted the feed forward compensation method and neural network control. Experiments carried 7ut on the linear motor test setup show that this control methods is usable in order to reduce the motor ripple.

  • PDF

Study for Improvement of Tracking Accuracy of the Feeding System with Iron Core Type Linear DC Motor (철심형 리니어모터 이송계의 추종성 향상에 관한 연구)

  • 송창규;황주호;박천홍;김경호;정재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.71-73
    • /
    • 2001
  • The requirements for higher productivity call for high speed of the machine tool axes. Iron core type linear DC motor is growly accepted for a viable candidate of the high speed machine tool feed unit. LDM, however, has inherent disturbance force components: cogging and force ripple. These disturbance force directly affects the carrage tracking accuracy and must be eliminated or reduced. Reducing motor ripple, this paper adapted the feed forward compensation method. Experiments carried out on the linear motor test setup show that this compensation method is usable in order to reduce the motor ripple.

  • PDF

Studdy for Force Ripple Suppression of the Iron Core Linear Motors (철심형 리니어모터의 추력 리플 억제에 관한 연구)

  • 송창규;김정식;김경호;박천홍
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.358-362
    • /
    • 2004
  • Higher productivity requires high-speed motion of machine tool axes. The iron core linear DC motor (LDM) is widely accepted as a viable candidate for high-speed machine tool feed unit. LDM, however, has two inherent disturbance force components, namely cogging and thrust force ripple. These disturbance forces directly affect the tracking accuracy of the feeding system and must be eliminated or reduced. In order to reduce motor ripple, this research adapted the feedforward compensation method and neural network control. Experiments carried out with the linear motor test setup show that these control methods are effective in reducing motor ripple.

  • PDF

Design of Digital Controller Based DSP for Thrust Ripples Suppression of PMLSM (PMLSM의 추력 리플 저감을 위한 DSP기반 디지털 제어기의 설계)

  • Jin, Sang-Min;Zhu, Yu-Wu;Kim, Do-Sun;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.140-142
    • /
    • 2008
  • Thrust ripples in Permanent Magnet Linear Motor(PMLSM) are mainly generated by cogging force. Cogging force caused by the interaction between the iron core and the Permanent Magnet(PM), and end effect. This paper has proposed a control method for thrust ripples suppression and design of one-chip proceeding digital controller using TMS320LF2407. This control method is realized by Field Oriented Control(FOC) adding to current compensation. The effectiveness of proposed control method is verified by experimentation comparing between the compensation and non-compensation.

  • PDF