• Title/Summary/Keyword: 추력조정

Search Result 61, Processing Time 0.032 seconds

An Analysis of Magnet Unit of Electro-Pneumtic Control Valve Positioner (전공식 콘트롤 밸브 Positioner 용 Magnet Unit의 해석)

  • 김성재;김지원;조순철;정선태;유형근;전찬구;고택범
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.6
    • /
    • pp.321-326
    • /
    • 1997
  • We analyzed an important part of control valve, magnet unit, which is used to control the fluid. Magnetic circuit which is composed of magnet and yoke is analyzed using finite element method. Then, flux density and coil force were calculated and compared with those of measured. According to the simulation results, the gap field, force constant, and permeance coefficient were 3~5 kG, 27.5 N/A, 22.1, respectively, which corresponded reasonably well with the measured values. We also obtained reluctance factor of 1.1 and fringing factor of 1.4 by simulation.

  • PDF

Study of two phase flow and erosion characteristic in SRM nozzle (고체 추진제 로켓 노즐 내부의 2상 유동 및 마모 특성에 관한 연구)

  • 김완식;조형희;배주찬
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.32-32
    • /
    • 1998
  • 고체 추진제 로켓의 연소시에 발생되는 산화 알루미늄(A1$_2$O$_3$) 입자는 로켓 추진 노즐에서 팽창과정의 효율을 저하시키는 요소가 되며, 이러한 비효율성은 연소 가스와 입자간의 비평형 상태 효과와 기본적인 속도와 열적 차이에 의해서 발생된다고 보고되었다. 또한 연소시 발생된 산화 알루미늄 입자는 높은 열과 큰 운동량을 가지고 로켓 노즐 내부를 유동하게 되며, 매우 많은 량이 짧은 시간에 고온 고속으로 노즐 벽면이나 기타 구조물에 충돌 및 점착하기 때문에 로켓 노즐내의 표면이 손상을 입게 되고, 로켓의 방향 제어 및 조정 안정성이 저하되며, 구조적인 강도가 약화 될 수 있다. 또한 산화 알루미늄 액적들의 경우 노즐 벽면에 고착되게 되면 로켓의 중량 증가로 인해서 추력의 손실을 초래할 수 있다. 따라서 이러한 연소 부산물들의 운동 경로와 충돌 위치 및 표면에서의 충돌량과 그리고 충돌에 따른 마모량 및 점착 그리고 열전달 특성을 예측하는 것이 필수적이다.

  • PDF

Wrinkle Reduction Design Method of Triangular Solar Sail (삼각형 태양돛의 주름저감 설계방안)

  • Bae, Hongsu;Woo, Kyeongsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.940-949
    • /
    • 2013
  • In this paper, wrinkle reduction design was studied for triangular sail. Wrinkles in the solar sail membrane can change the load path and surface topology which may have an adverse effect on propulsion performance and controllability. In this study, wrinkle reduction strategies of adjusting cable angle, catenary and catenary-wire schemes were considered and the design parameters for wrinkle reduction were systematically investigated.

Flight Attitude Control of using a Fuzzy Controller (퍼지제어기를 이용한 비행 자세제어)

  • 박종오;설재훈;김승철;임영도
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.143-147
    • /
    • 2002
  • 본 논문에서는 비행물체의 운동에 기초한 지능제어 알고리즘을 사용하여 대기의 환경적 요인과 기체형태 및 추력의 인위적 요인들간의 복잡한 함수관계를 지식과 경험에 의한 제어규칙으로서 비행안정성 확보와 자율비행을 위한 비행 자세제어를 행하였다. 비행 자세제어를 위하여 사용한 지능제어기는 다변수 입력 및 출력이 가능하며 강인성을 지닌 퍼지제어기를 사용하였다 실험을 위해 모형비행기와 자세 검출용 센서를 제작하고, 비행 전문가의 지식과 경험을 기초로 하여 작성한 제어규칙에 의하여 프로그램 된 퍼지제어기를 수 차례의 시험비행을 통해 제어규칙을 조정한 결과 안정된 자세제어를 행할 수 있었다.

Modeling and Development of an Integrated Controller for a Ship with Propellers and Additional Propulsion Units (프로펠러와 부가추력장치를 갖는 특수선의 모델링 및 통합제어기 개발)

  • Kim Jong Hwa;Lim Jae Kwon;Lee Byung Kyul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.236-242
    • /
    • 2005
  • Dynamic Positioning(DP) system maintains ship's position (fixed location or predetermined track) exclusively by means of CPPs and thrusters. To generate the control input adequate to various situation an integrated controller for CPPs and thrusters is required. The integrated controller is composed of a thrust calculation algorithm and a thrust allocation algorithm. The thrust calculation algorithm generates thrusts in the surge direction and the sway direction from the desired forward and lateral speed and generates a moment about the yaw axis from desired heading angle. The thrust allocation algorithm allocates the generated thrusts and moment to each CPP and thruster. Computer simulations are executed to confirm the effectiveness of the suggested controller.

A Study on the Combustion Characteristics of Paraffin wax/LDPE Blended fuel (Paraffin wax/LDPE 혼합 연료의 연소 특성에 관한 연구)

  • Kim, Soo-Jong;Cho, Jung-Tae;Lee, Jung-Pyo;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.29-38
    • /
    • 2010
  • The experimental study on paraffin wax/LDPE blended fuel for hybrid rocket was performed. Various combustion characteristics of blended fuel were compared with pure paraffin, HTPB, HDPE and SP-1a fuel in order to evaluate the performance of blended fuel. The regression rate of lab-scale and large-scale motor using pure paraffin fuel was increased by 10.2 and 9.8 factor when respectively compared to that of HDPE. The regression rate factor of blended fuel was 3.4 in which the regression rate of blended fuel was higher than that of HTPB and HDPE, but lower than that of pure paraffin, SP-1a fuel. The values of characteristic velocity and specific impulse of blended fuel was higher than those of pure paraffin, HTPB and HDPE, and almost the same as SP-1a fuel. As these results, it was confirmed that blended fuel can be an effective solid fuel for hybrid rocket.

Investigation of Prior Technology and Development Case for Consecutive Excavation Technique of Shield TBM (연속굴착 쉴드 TBM 기술 관련 해외기술 및 개발사례 조사)

  • Mun-Gyu Kim;Jung-Woo Cho;Hyeong-seog Cha
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.299-311
    • /
    • 2023
  • Continuous excavation technologies are developed to improve the excavation rate of shield TBM. Continuous excavation is a technology that provides thrust to segments, excluding being installed one, to reduce tunneling downtime. This paper investigated the prior technology related to continuous excavation segments. The main technology was classified into helical segment, honeycomb segment, and conventional segment methods. The helical segment method has not been applied in actual construction yet, and the honeycomb segment method has not succeeded in commercialization. The continuous excavation method using conventional segments has been successfully demonstrated. The thrust force and operation method of the thrust jacks for the semi-continuous technology were analyzed. Continuous excavation TBM research is also progressing in Korea, and through the analysis of successful cases, the need to develop independent continuous excavation methods has been identified.

Study on a Propulsion Control of the Roller Coasters Train based on Air Cored Linear Synchronous Motor (공심형 선형동기전동기 기반의 궤도열차 추진제어에 관한 연구)

  • Jo, Jeong-Min;Han, Young-Jae;Lee, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8187-8194
    • /
    • 2015
  • To accelerate a heavy roller coaster train with over 1G force, a lot of thrust is required and linear synchronous motor(LSM) as propulsion method is suitable for this kind of system. To increase the propulsion efficiency of LSM, precise and real-time position information of vehicle is required for accurate phase control. However, the discontinuous position information with relatively long time interval is usually transmitted from the hall-sensors on the track every magnet length. In this paper, the basic motor model based on traditional dq-axis equations is described and the motor dynamic model is produced by considering the cogging force and friction loss. To improve the position accuracy, the position estimator is also proposed for LSM control system. Simulations were performed to check the characteristics of the torque control system which includes the position estimator based on the motor model. Simulation results based on the linearized model show that this control system has an enough bandwidth and phase margin and the executed algorithm achieves an ideal effect to follow the real-time position signal. Therefore, the feasibility of position estimator is also confirmed.

THE BEAM POINTING OF COMMUNICATIN SATELLITE IN GEOSYNCHRONOUS INCLINED ORBIT (궤도경사각을 가진 통신위성의 빔 포인팅에 대한 연구)

  • 김방엽;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.112-122
    • /
    • 1995
  • We assume that the KOREASAT fails the entry of the geostationary orbit due to the error at the apogee kick motor firing. A simulation is done for the satellite that has a geosynochronous orbit with a non-zero degree inclination angle due to the failure at the apogee kick motor firing caused by the unbalance of the fuel storage and the spin of the thrust vector, etc. We analyzed the evolution of the orbit using the perturbation theory and calculated the changes of the eccentricity and the inclination. WHen a communication satellite has the figure eight trajectory, the beam point also traces the satellite. In this paper, We develope an algorithm to attack the above problem by stabilizing the beam point using the adjustment of the roll angle of the satellite. The spin action on the polarization plane that occurs when a satellite passes the ascending node and descending node affects the efficiency of the communication a lot, so we did another simulation for the better yaw angle adjustment for the KOREASAT to reduce the spin actino on the polarization plane.

  • PDF

Physics-based Simulation of a VTVL Vehicle for 2D Games (2D 게임을 위한 수직 이착륙 비행체의 물리 기반 시뮬레이션)

  • Moon, Sukjin;Choi, Min Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.19 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • In this paper, we consider a physics-based 2D flight simulation game where users can easily control realistic flight of a vehicle equipped with two thrusters that allow vertical takeoff and vertical landing. The flight vehicle can be manipulated by directly controlling the thrusting force at each thruster using a pair of analog input devices such as joysticks. However, it might require too much practice to make aerobatic flying solely with this kind of control. We propose a set of fly-by-wire methods that provide easy-to-use, intuitive control of a VTVL vehicle. Based on PD controllers, the proposed methods allow users to specify the velocity or position of the vehicle directly. Furthermore, they are easy to understand and simple to implement. We expect that the proposed vehicle model and control mechanism could be used in various 2D games.