• Title/Summary/Keyword: 추력조정

Search Result 61, Processing Time 0.019 seconds

Analysis of Monopropellant Thruster Plume Effects by DSMC (DSMC를 이용한 단일추진제 추력기 플룸의 영향 해석)

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Kim, Su-Kyum;You, Jae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.179-182
    • /
    • 2007
  • The new KOMPSAT in preliminary design phase will utilize 4.45 N monopropellant thrusters for attitude and orbit control. In this paper, a numerical plume analysis is performed to verify the effects of thruster plume on the satellite with a 3-D satellite base region model by DSMC. As a result, plume behaviors such as overall plume temperature, total density and thermal radiation to solar array are estimated.

  • PDF

Liquid-monopropellant Thrusters for the 3-axis Attitude Control of Space Launch Vehicles -Part 2: A Practical Application of Flight-axes/Attitude Control Thrusters to the Space Launch Vehicle and Their Design Development Localization (우주발사체 3축 자세제어용 단일액체추진제 추력기 -Part 2: 비행축/자세제어용 추력기의 우주발사체 적용과 국내 설계개발)

  • Kim, Jeong-Soo;Bae, Dae-Seok;Jung, Hun;Seo, Hang-Seok;Kim, In-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.179-182
    • /
    • 2011
  • A practical application of flight-axes/attitude control thrusters to the space launch vehicle and their design development localization are investigated and analyzed. Hydrazine thrusters are mostly used in a final stage of space launch vehicles on account of its higher specific impulse and reliability necessary for the precise attitude control attaining the orbit insertion with higher accuracy.

  • PDF

Development of a 700 W Class Laboratory Model Hall Thruster (700 W급 홀 전기추력기 랩모델 연구개발)

  • Doh, Guentae;Kim, Youngho;Lee, Dongho;Park, Jaehong;Choe, Wonho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.5
    • /
    • pp.65-72
    • /
    • 2021
  • 700 W class laboratory model Hall thruster, which can be used for the orbit control or station keeping of small satellites, was developed. The size of the discharge channel was determined using a scaling law, and the magnetic field was designed to be symmetric with respect to the midline of the discharge channel and to be maximized outside the discharge channel. Base pressure of a vacuum chamber was maintained below 2.0×10-5 Torr during experiments, and the thrust was measured by a thrust stand. The anode flow rate and coil current were varied with the fixed anode voltage at 300 V. Under the operation condition at 2.36 mg/s anode flow rate and 2.4 A coil current, performance was optimized as 38 mN thrust, 1,540 s total specific impulse, and 50 % anode efficiency at 620 W anode power.

ORBITAL MANEUVER USING TWO-STEP SLIDING MODE CONTROL (2단 슬라이딩 제어기법을 이용한 인공위성의 궤도조정)

  • 박종옥;이상욱;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.235-244
    • /
    • 1998
  • The solutions of orbital maneuver problem using the sliding mode control in the presence of the erath gravitational perturbations is obtained. Especially, the optimization of consuming fuel for maneuver is performed. The impulsive solution to Lambert's problem using the combined equation method to minimize total ${\Delta}V is used for the desired orbit and the maneuver times. Two-step sliding mode control method is introduced for satisfying the boundary conditions of finite-thrust rendezvous problem at the end of maneuver time. Using the new approach to the orbit maneuver problem, two-step sliding mode control, orbit maneuvers are processed. The solutions to a rendezvous using the optimal control are obtained, and they are compared to the results by two-step sliding control.According to the new approach for orbit maneuver, the thrust-coast-thrust type controller is obtained to make satellite to track desired Lambert's orbit, and the total ${\Delta}V$ required for maneuver is resonable in comparison with the impulsive solution to Lambert's problem. The final state variables, also are close to the boundary conditions at the end of maneuver times.

  • PDF

Control Design of the High Performance Nozzle System(Jet Vane Type) (추력방향제어 시스템 Controller)

  • 이명준;김성진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.24-24
    • /
    • 1998
  • 미사일의 수직 발사 시스템은 수송 및 발사에 필요한 공간을 작게 차지하고 간편하여 각국이 선호하고 있다. 그러나 미사일이 수직발사 초기에는 매우 낮은 속도로 상승하므로 미사일의 방향조정용 Fin의 공력이 발생하지 않기 때문에 초기에 Jet Vane 등의 기계장치를 이용 추력의 방향을 제어하여 마사일의 방향을 목표로 향하도록 하는 Controller가 필요하게 된다. 본 Controller는 DC Motor와 감속기를 이용하여 Vane을 제어 할 수 있도록 설계되어 있으며 1차적으로는 지상 시험용 Controller를 개발 완료된 상태에 있다. 추후 실제 사용하기 위한 Controller를 만들기 위해서는 Main 유도장치와의 상호 Interface 관계를 고려하여 설계되어야 하며 소량 경량화 및 충분한 신뢰성을 갖춘 Controller를 개발하여야 한다.

  • PDF

Estimation of Thruster Efficiency for Koreasat I, II under APEMAC Operation (무궁화위성1, 2호 APEMAC을 통한 추력기 효율 추정 연구)

  • Park, Young-Woong;Park, Bong-Kyu;Nam, Moon-Gyung;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.141-147
    • /
    • 2002
  • Estimation of thrusters efficiency is a very important process at the end of lifetime of a satellite. This paper introduces a technique to estimate the efficiency change of thrusters considering bubble effect for Koreasat I. During APEMAC(Automatic Pitch Error/ Momentum Adjust Control), the change in thruster efficiency is estimated to compare the attitude telemetry data of the Koreasat I with the results of the control logic using Simulink. The outcome of this study is expected to contribute to improving the operational load at the end of generic communication satellite mission.

A Study on the Thrust Axis Alignment of Kick Motor for KSLV-I (KSLV-I 상단 킥 모터 추력 축 정렬에 대한 연구)

  • Jung, Dong-Ho;Lee, Han-Ju;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.76-82
    • /
    • 2011
  • The thrust axis alignment of the launch vehicle is very important because the misalignment causes the unstable attitude control and results in mission failure. Generally, optical methods such as digital theodolite and laser tracker and mechanical method such as turn table method are used to align the thrust axis. This article deals with the simple method using inclinometer based on the gravitational direction. The inclinometer indicates zero degree when that is located on the perpendicular plate to gravitational direction. This method needs two inclinometer, such as standard and alignment ones and uses the angle difference as the reference data to adjust the TVC actuator offset.

KSR- III 추력벡터제어를 위한 유압-서보 김발엔진 구동시스템에 관한 연구

  • Lee, Hee-Joong
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.141-146
    • /
    • 2002
  • During dynamic flight by propulsion of rocket engine, in the atmosphere, the attitude control of flight vehicle can be accomplished by the aerodynamic fin actuator. But, in the outer space, the method of TVC(Thrust Vector Control) is only depend on for it. There are many systems which were developed for TVC. In our research, among them we adopted gimbal engine actuation system which could control the vector of thrust by swivelling rocket engine connected by gimbal. There are electro-hydraulic, electro-mechanical and pneumatic system which can be used as gimbal engine actuation system, but the electro-hydraulic system that has high ratio of output power to mass is preferred for the high power system. In this note, we made a mathematical model of the electro-hydraulic gimbal engine actuation system for the TVC of KSR-III in detail and on the base of this model we performed a simulation study. And then, we verified the model by making a comparison between the simulation and the experiments on the real system.

  • PDF

Liquid-monopropellant Thrusters for the 3-axis Attitude Control of Space Launch Vehicles -Part 1: Performance Characteristics and Application of Liquid-monopropellants (우주발사체 3축 자세제어용 단일액체추진제 추력기 -Part 1: 단일액체추진제의 성능특성 및 활용)

  • Kim, Jeong-Soo;Park, Jeong;Jung, Hun;Kam, Ho-Dong;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.175-178
    • /
    • 2011
  • A performance characteristics and application status of liquid-monopropellants used for 3-axis control thrusters are surveyed, in this paper. Hydrogen peroxide was widely used as monopropellant until mid-1960s, but it is rapidly replaced with hydrazine which has better performance of specific impulse, storability, and so on. Hydrazine is mostly employed as a liquid-monopropellant of satellite, interplanetary spacecraft, and space launch vehicle owing to its moderate performance features.

  • PDF

Low Thrust, Fuel Optimal Earth Escape Trajectories Design (저추력기를 이용한 연료 최적의 지구탈출 궤적 설계 연구)

  • Lee, Dong-Hun;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.647-654
    • /
    • 2007
  • A Discrete continuation Method/homotopy approaches are studied for energy/fuel optimal low thrust Earth escape trajectory by solving a two point boundary value problem(TPBVP). Recently, maneuvers using low thrust propulsion system have been identified as emerging technologies. The low thruster is considered as the main actuator for orbit maneuvers. The cost function consists of a energy/fuel consumption function, and constraints are position and velocity vectors at the terminal escape point. Solving the minimum energy/fuel problem directly is not an easy task, so we adopt the homotopy analysis. Using a solution of the minimum energy, which is solved by discrete continuation method, we obtain the solution of the minimum fuel problem.