• Title/Summary/Keyword: 추력기 플룸

Search Result 16, Processing Time 0.024 seconds

High-Altitude Environment Simulation of Space Launch Vehicle Including a Thruster Module (추력기 모듈을 포함한 우주발사체 고공환경모사)

  • Lee, Sungmin;Oh, Bum-Seok;Kim, YoungJun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.791-797
    • /
    • 2018
  • In this work, the high-altitude environment simulation study was carried out at an altitude of 65 km exceeding Mach number of 6 after the launch of Korean Space Launch Vehicle using a shock tunnel. To minimize the flow disturbance due to the strut support of test model as much as possible, a few different types of strut configurations were considered. Using the configuration with minimum disturbance, the high-altitude environment simulation experiment including a propulsion system with a single-plume, was conducted. From the thruster test through flow visualization, not only a shockwave pattern, but a general flow-field pattern from the mutual interaction between the exhaust plume and the free-stream undisturbed flow, was experimentally observed. The comparison with the computation fluid dynamic(CFD) results, showed a good agreement in the forebody whereas in the afterbody and the nozzle the disagreement was about ${\pm}7%$ due to unwanted shockwave formation emanated from the nozzle-exit.

Development and Experiments of the Low Power Hall Thruster for STSAT-3 (과학기술위성 3호 탑재를 위한 저전력 홀 추력기 개발 및 시험)

  • Lee, Jong-Sub;Seo, Mi-Hui;Seon, Jong-Ho;Choe, Won-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.298-302
    • /
    • 2009
  • Low power Hall thruster is under development as one of the core technologies for STSAT-3. The Hall thruster has several advantages such as its simple structure, high thrust density and specific impulse etc. Development target values deduced by analyzing requirements are consumed electrical power, thrust, thrust efficiency, and specific impulse of < 300 W, > 10 mN, ~ 35%, and > 1000 s, respectively. In order to achieve the target specifications, two prototype Hall thrusters were developed and compared. To date, thrust and efficiency are 11 mN and 37% under the total power of 290 W with 0.97 mg/s Xe propellent supply.

  • PDF

Performance Analysis and Configuration Design of the Thruster Nozzle for Ground-firing Test and Evaluation (지상연소시험평가용 추력기 노즐의 성능해석과 형상설계)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.10-16
    • /
    • 2012
  • A computational analysis of nozzle flow characteristics and plume structure is conducted to examine performance of the supersonic nozzle employed in a thruster for ground firing test. At first, flow simulations in two-dimensional converging-diverging nozzle are performed for the verification of computational capability as well as turbulence model validity. Axisymmetric converging-diverging nozzles for ground firing test are analyzed with the k-${\omega}$ SST model. A performance penalty caused by flow separation in a diverging section is observed in initially-designed nozzle. The performance could be enhanced by the modification of the diverging section of nozzle contour.

Plume Structure Analysis of an Axisymmetric Supersonic Micro-nozzle at the Various Pressure Ratios (압력비가 변할 때 축대칭 초음속 노즐의 플룸 구조 해석)

  • Kwon, Soon-Duk;Kim, Sung-Cho;Kim, Jeong-Soo;Choi, Jong-Wook;Kim, Yong-Sseok
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2862-2867
    • /
    • 2007
  • The steady non-reacted compressible flow field in a symmetric micro-thruster, which is used for the accurate attitude control of a satellite, is analyzed varying the nozzle pressure ratio (NPR) to investigate the plume characteristics. The nozzle throat diameter is 0.06 inch and the area ratio is 56. The recirculation region is found just behind the normal shock at the several NPRs due to the locally adverse pressure gradient along the nozzle centerline when the environmental pressure is atmospheric. This phenomenon, the cause of flow loss, is similar to the flow behind a blunt body. As NPR increases the location of Mach disk, characteristics of the normal shock, moves downstream and its strength increases. The Mach number distribution appears in a wave-type patter after the normal shock because oblique shocks are reflected on the shock boundaries especially when NPRs are very high.

  • PDF

Performance Analysis of the Supersonic Nozzle Employed in a Small Liquid-rocket Engine for Ground Firing Test (소형 액체로켓엔진 지상연소시험용 초음속 노즐의 성능해석)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.321-324
    • /
    • 2011
  • A computational analysis of nozzle flow characteristics and plume structure using Reynolds-averaged Navier-Stokes equations with $k-{\omega}$ SST turbulence model was conducted to examine performance of the supersonic nozzle employed in a small liquid-rocket engine for ground firing test. Computed results and experimental outcome of 2-D converging-diverging nozzle flow were compared for verifying the computational capability as well as the turbulence model validity. Numerical computations of 2-D axisymmetric nozzle flow was carried out with the selected model. As a result, flow separation with backflow appeared around the nozzle exit. This investigation was reported as a background data for the optimal nozzle design of small liquid-propellant rocket engine for ground test.

  • PDF

Numerical Analysis on Plasma Particles inside Electro-magnetic Field Using Particle-in-cell Method (Particle-in-cell 기법을 이용한 전자기장내 플라즈마 입자의 거동 해석)

  • Han, Doo-Hee;Joe, Min-Kyung;Shin, Junsu;Sung, Hong-Gye;Kim, Su-Kyum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.932-938
    • /
    • 2017
  • Particle-in-cell method which blends Eulerian grids and Lagrangian particle is utilized to solve simplified hall-effect thruster. Since this study individually tracks not only neutrons and ions but also electrons, message passing interface(mpi) scheme is adopted for parallel computer cluster. Helical movement of an electron cloud in constant magnetic field is validated comparing with an exact solution. A plasma in radial magnetic field and axial electric field in a reaction cylinder is established. Electrons do double helix movement and are well anchored in a cylinder. Ionization of neutrons by impact with high-speed electrons generates ion particles. They are accelerated by axial electric field, which forms a plume of a plasma-effect thruster.