• Title/Summary/Keyword: 추력기

Search Result 680, Processing Time 0.024 seconds

Geometric Path Tracking for a Fish Robot (물고기 로봇의 기하학적 경로 추종)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.906-912
    • /
    • 2014
  • The study of fish robot is a main subject that are related with the propulsive force comparison using a varying amplitude and frequency for body and tail motion trajectory, and the quick turn using a proper trajectory function. In this study, when a fish robot thrusts forward, feedback control is difficult to apply for a fish robot, because body and tail joints as a sine wave are rolled. Therefore, we detect the virtual position based on the path of the fish robot, define the angle errors using the detected position and the look-ahead point on the given path, and design a controller to track given path. We have found that the proposed method is useful through the computer simulations.

COMS GTO Injection Propellant Estimation using Monte-Carlo Method (몬테카를로방법을 이용한 천리안위성 궤도전이 소요추진제량 추정에 관한 연구)

  • Park, Eungsik;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.62-71
    • /
    • 2015
  • Geostationary satellites use the thruster in order to control the location change and mount the suitable amount of liquid propellant depending on the operating lifetime. Therefore the lifetime of the geostationary satellite depends on the residual propellant amount and the precise residual propellant gauging is very important for the mitigation of economic losses arised from premature removal of satellite from its orbit, satellites replacement planning, slot management and so on. The propellant gauging methods of geostationary satellite are mostly used PVT method, thermal mass method and bookkeeping method. In this paper, we analysis the modeling of COMS(Communication, Ocean & Meteorological Satellite) bipropellant system for bookkeeping method and COMS GTO(Geostationary Transfer Orbit) injection propellant estimation using Monte-Carlo method.

Development of Prototype Fill/Drain Valve for Supply of Satellite Propellant (인공위성 추진제 공급용 Fill/Drain 밸브 시제품 개발)

  • Kim, Su-Kyum;Yu, Myoung-Jong;Lee, Kyun-Ho;Choi, Joon-Min;Jang, Ki-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.26-31
    • /
    • 2006
  • Through the KOMPSAT program, Koreanization of thruster have been carried out successfully, but there are still many difficulties in Koreanization of most core parts of propulsion system. Because the development of core parts is essential to participate in the advanced nations, KARI has carried out development of Fill/Drain valve for propellant/pressurant supply of satellite, which has high possibilities to be koreanized, with Hanwha Corp.. This paper summarizes overall processes of development including design, manufacturing and test, and finally 4 sets of modules were successfully made. Also the satisfaction of performance requirements are verified through performance tests.

Development of Propulsion Subsystem for KOMPSAST (다목적 실용위성의 추진시스템 개발)

  • 최진철;윤효철
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.80-89
    • /
    • 1998
  • Propulsion subsystem transfers KOMPSAT into mission orbit and controls its attitude. Design factor consists of structure safety, electrical circuit design, consumable power estimation of thermal hardwares, damping device design of fuel transient pressure, and system configuration design by considering plume effect from thruster firing. System level analysis should be performed for verification of system design under launch vehicle and orbital environment. Electrical functional test of thermal control hardware, proof pressure test, cleanliness verification test, and internal/external leakage test of fuel feeding system should be carried out for performance estimation of propulsion system. Design and assembly process of propulsion subsystem was depicted and reliability of system was verified by test analysis in this paper.

  • PDF

The Analysis of Flow Characteristics of Conductive Liquid Metal Using TLIM Electromagnetic Pump (TLIM 전자펌프를 이용한 전도성 용융금속의 유동특성 해석)

  • Kim, Chang-Eob;Jeon, Mun-Ho;Kwon, Jeong-Tae;Lim, Hyo-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.130-141
    • /
    • 2008
  • This paper presents the flow characteristics in the fluid circulation loop using the tubular type linear induction motor(TLIM) electromagnetic pump. A TLIM of thrust 40[N] is analyzed using the equivalent and genetic algorithm for the system The flow characteristics are analyzed by coupling the Maxwell equations with the Navier-Stokes equation with the thrust. The analysis algorithm is developed for analyzing the liquid metal flow in the system for laminar and turbulent flow. And the effect of thrust is analyzed for the flow characteristics.

A Conceptual Design of the Dual-Mode Propulsion System for a Geosynchronous Communication Satellite (이중모드시스템을 적용한 정지궤도 통신위성 추진시스템 개념설계)

  • 박응식;김정수;양군호;김중표
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.98-106
    • /
    • 2000
  • A conceptual design of propulsion system for a geosynchronous communication satellite with 12 years design life is presented in this paper. Propellant mass budget for the design life is calculated using total velocity increment ($\Delta$V) flowed-down from mission requirement analysis. Sizes of the fuel and oxidizer tank are derived based on the calculated propellant mass budget, and mass of the pressurant as well as the size and Pressure of pressurant tank are calculated too. Thruster positioning, number of rocket engines, and position of tank are determined through trade-off study with Structure & Mechanical Subsystem. Propulsion system configuration and its schematics are presented finally.

  • PDF

Results Analysis for On-orbit Operation of KOMPSAT-1 Propulsion System (다목적실용위성 1호 추진시스템 궤도운용 결과 분석)

  • 김정수;한조영;진익민
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.107-113
    • /
    • 2000
  • Design configuration and performance requirements for KOMPSAT-1 propulsion system were described. Operational results of the propulsion system obtained through the satellite Launch and Early Operation Phase were scrutinized. Performance characteristics of the thrusters which are employed for spacecraft attitude control and the corresponding propellant depletion rate were analysed according to satellite operation modes. Additionally, propellant leakproof and thermal control capability were checked out from the view point of system verification. Propellant depletion rates calculated by PVT method in $\Delta$V maneuvering and each attitude control mode produce the very meaningful results for the prediction of total propellant consumption up to the end of satellite mission life.

  • PDF

Engineering Validation for Propellant Isolation Assembly of Korea Pathfinder Lunar Orbiter Part I: Numerical Analysis (시험용 달 궤도선의 추진제 공급부 설계 검증 Part I: 수치해석)

  • Kim, Sun-Hoon;Kim, Su-Kyum
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.96-103
    • /
    • 2019
  • In this study, a comparison was conducted to verify the propellant isolation assembly of the Korea Pathfinder Lunar Orbiter (KPLO). An engineering validation model (EVM) is being developed to simulate the flow of the flight model. Three factors were selected for comparison: the total pressure drop during propellant isolation assembly, the waterhammer by driving thruster valve, and the orifice set up for flow control and damping the waterhammer. The analysis results are compared with EVM test results. In the future, backup data to confirm the design will be established.

System Design of Staged Combustion Cycle Liquid Rocket Engine for Low Cost Launch Vehicle (저비용 발사체를 위한 다단연소 사이클 액체로켓 엔진 시스템 설계)

  • Cho, Won Kook;Ha, Seong-Up;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.517-524
    • /
    • 2019
  • A system design has been performed for a vacuum thrust 88 ton staged combustion cycle rocket engine. Previous research has been used to estimate the performance of the engine components. And the algorithm has been proposed to evaluate the converged engine system performance. The present methodolgy has been verified by comparing the published data for RD-180. The present work adopts the most of the previous KSLV-II engine heritage for both performance improvement and cost competitiveness. The combustion pressure has been decided as 12MPa considering manufacturing difficulty, cost and performance improvement, and as a result the vacuum specific impulse has increased by 23.4s.

Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator (직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델)

  • Oh, Sang Gwan;Lee, Hee Joong;Park, Hyun Jong;Oh, Dongho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.738-746
    • /
    • 2019
  • Instead of hydraulic actuation systems, an electromechanical actuation system is more efficient in terms of weight, cost, and test evaluation in the thrust vector control of the 7-ton gimbal engine used in the Korea Space Launch Vehicle-II(KSLV-II) $3^{rd}$ stage. The electromechanical actuator is a kind of servo actuator with position feedback and uses a BLDC motor that can operate at high vacuum. In the case of the gimballed rocket engine, a synthetic resonance phenomenon may occur due to a combination of a vibration mode of the actuator itself, a bending mode of the launcher structure, and an inertial load of the gimbals engine. When the synthetic resonance occurs, the control of the rocket attitude becomes unstable. Therefore, the requirements for the stiffness have been applied in consideration of the gimbal engine characteristics, the support structure, and the actuating system. For the 7-ton gimbal engine of the KSLV-II $3^{rd}$ stage, the stiffness requirement of the actuation system is $3.94{\times}10^7N/m$, and the direct drive type electromechanical actuator is designed to satisfy this requirement. In this paper, an equivalent stiffness analysis model of a direct drive electromechanical actuator designed based on the stiffness requirements is proposed and verified by experimental results.