• Title/Summary/Keyword: 추력기

Search Result 680, Processing Time 0.025 seconds

MULTI-PHYSICAL SIMULATION FOR THE DESIGN OF AN ELECTRIC RESISTOJET GAS THRUSTER IN THE NEXTSAT-1 (차세대 인공위성 전기저항제트 가스추력기의 다물리 수치모사)

  • Chang, S.M.;Choi, J.C.;Han, C.Y.;Shin, G.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • NEXTSat-1 is the next-generation small-size artificial satellite system planed by the Satellite Technology Research Center(SatTReC) in Korea Advanced Institute of Science and Technology(KAIST). For the control of attitude and transition of the orbit, the system has adopted a RHM(Resisto-jet Head Module), which has a very simple geometry with a reasonable efficiency. An axisymmetric model is devised with two coil-resistance heaters using xenon(Xe) gas, and the minimum required specific impulse is 60 seconds under the thrust more than 30 milli-Newton. To design the module, seven basic parameters should be decided: the nozzle shape, the power distribution of heater, the pressure drop of filter, the diameter of nozzle throat, the slant length and the angle of nozzle, and the size of reservoir, etc. After quasi one-dimensional analysis, a theoretical value of specific impulse is calculated, and the optima of parameters are found out from the baseline with a series of multi-physical numerical simulations based on the compressible Navier-Stokes equations for gas and the heat conduction energy equation for solid. A commercial code, COMSOL Multiphysics is used for the computation with a FEM (finite element method) based numerical scheme. The final values of design parameters indicate 5.8% better performance than those of baseline design after the verification with all the tuned parameters. The present method should be effective to reduce the time cost of trial and error in the development of RHM, the thruster of NEXTSat-1.

A Study on the Dynamic Characteristics Improvement of Direct Drive Electro-mechanical Actuation System using Dynamic Force Feedback Control (동적 하중 되먹임 제어를 사용한 직구동 방식 전기기계식 구동장치시스템의 동특성 개선에 관한 연구)

  • Lee, Hee-Joong;Kang, E-Sok;Song, Ohseop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.328-341
    • /
    • 2017
  • In the control actuator system of a launch vehicle based on thrust vectoring, the interaction between electro-mechanical position servo and inertial load are combined with the dynamic characteristics of the flexible vehicle support to generate synthetic resonance. This occurred resonance is fed back to the attitude control system and can influence stability of launch vehicle. In this study, we proposed a simulation model to analyze synthetic resonance of electro-mechanical actuation system for thrust vector control and explained the results of simulation and test using dynamic force feedback control which improves dynamic characteristics of servo actuation system by reducing synthetic resonance.

발사체 추력백터제어 구동장치용 컴퓨터 하드웨어 설계

  • Park, Moon-Su;Lee, Hee-Joong;Min, Byeong-Joo;Choi, Hyung-Don
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.56-64
    • /
    • 2004
  • In this research, design results of computer hardware which control solid motor movable nozzle thrust vector control(TVC) actuator for Korea Space Launch Vehicle I(KSLV-I) are described. TVC computer hardware is the equipment which has jobs for receiving control commands from Navigation Guidance Unit(NGU) and then actuating TVC actuator. Also, it has ability to communicate with other on board or ground equipments. Computer hardware has a digital signal processor as the main processor which is capable of high speed calculating ability of control algorithm, so it can have more stability, reliability and flexibility than the previous analog controller of KSR-III. Target board was designed for on board program development and then first prototype hardware was developed. Top level system design criteria, hardware configurations and ground support equipment of TVC computer system are described.

  • PDF

Transient Analysis of a Liquid Rocket Engine System Considering Thrust Control (추력 제어를 고려한 액체로켓 엔진시스템 과도해석)

  • Park Soon-Young;Choi Hwan-Seok;Seol Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.67-75
    • /
    • 2004
  • It is essential to develop a transient analysis model for the turbopump-fed type liquid rocket engine development, especially for deriving the number of test and its parameters. In this study we proposed a mathematical model of turbopump-fed type liquid rocket engine, and inspected transient mode changes of a rocket engine according to variations of thrust control valve opening ratio. To verify the results, we solved the same problem with AnaSyn software from Russia, and concluded that the results of transient code we developed deviated within 2% from AnaSyn results. Also, using the transient engine analysis code we showed the possibility to find out the system level design Parameters of the components. For example, we modeled a pressure stabilizer which is used to control the consistency of mixture ratio in the gas generator as forced damping system, and found the stability range of the natural frequency and the damping ratio with the transient engine system analysis code.

Performance evaluation and Applicable Possibility of $H_2O_2$ Gas Generator using Dual Catalyst System (이원 촉매를 이용한 과산화수소 가스발생기 성능평가 및 응용 가능성)

  • Rang Seong-Min;An Sung-Yong;Lim Ha-Young;Kwon Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.347-350
    • /
    • 2006
  • The rocket grade hydrogen peroxide has been widely used as a monopropellant in propulsion systems. In the present paper, we described an experimental study of a catalytic reactor that employs two stage catalyst beds to enhance the low temperature performance of the reactor. $K_2MnO_4$ was chosen as the catalyst for the initial stage of the reactor bed for its superior behavior in the low temperature regime. LSC was used for the catalyst of the second stage of the reactor. The gas generator with combined catalyst beds was built and tested to exhibit high decomposition efficiency over 90% and successful cold-start characteristics.

  • PDF

Thrust and Mixtrue Control of Liquid Propellant Rocket Engine using Q-ILC (Q-ILC를 이용한 액체추진제로켓엔진의 추력 및 혼합비 제어)

  • Jung, Young-Suk;Lim, Seok-Hee;Cho, Kie-Joo;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.139-145
    • /
    • 2006
  • LRE(Liquid propellant Rocket Engine) is one of the important parts to control the trajectory and dynamics of rocket. The purpose of control of LRE is to control the thrust according to requiredthrust profile and control the mixture ratio of propellants fed into gas generator and combustor for constant mixture ratio. It is not easy to control thrust and mixture ratio of propellants since there are co-interferences among the components of LRE. In this study, the dynamic model of LRE was constructed and the dynamic characteristics were analyzed with control system as PID control and PID+Q-ILC(Iterative Learning Control with Quadratic Criterion) control. From the analysis, it could be observed that PID+Q-ILC control logic is more useful than standard PID control system for control of LRE.

  • PDF

Introduction of Thrust Vector Control System and Control Valve Development for Space Launch Vehicles (우주발사체용 추력벡터제어 시스템 및 제어밸브류 개발 현황 소개)

  • Lee, Je-Dong;Park, Bong-Kyo;Park, Ho-Youl;Kim, Sang-Beom;Jun, Pil-Sun;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.613-615
    • /
    • 2009
  • This paper is to introduce Hanwha Aerospace R&D Center's development status of TVC(Thrust Vector Control) system and control valves for Korean space launch vehicles. With the successful development of KSR-III TVC system, Hanwha have developed TVC system and RCS control valves for KSLV-I. Also, in the advance research area of KSLV-II, Hanwha have participated in LOx and fuel flow control valves and LOx shut-off valve development in the engine supply system. Based on the accumulated experiences and technologies in the aerospace key components and system development, Hanwha will make an important contribution to KSLV-II development in the future.

  • PDF

Characteristic Research of Electromechanical Actuation System for Launch Vehicle Thrust Vector Control (발사체 추력벡터제어용 전기-기계식 구동장치시스템 특성 연구)

  • Min, Byeong-Joo;Choi, Hyung-Don;Kang, E-Sok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.164-170
    • /
    • 2007
  • In this paper, the development results of electromechanical TVC actuation system is described in the aspect of design, analysis, manufacturing and test. The kinds of prime power for TVC actuation system is classified by the variety of propulsion system of launch vehicle. The electric power by battery is the sole candidate for prime power of TVC actuation system at the view point of feasible domestic infra technologies for the present. The characteristic analysis study is performed between electromechanical and electrohydraulic actuation system with respect to power efficiency, performance and weight efficiency. The electromechanical actuation system has superiority of power and weight efficiency according to less opportunity of power conversion process.

  • PDF

Study on 1,200 N-class bipropellant rocket engine using decomposed $H_2O_2$ and kerosene (분해된 과산화수소와 케로신을 이용한 1,200 N 급 이원추진제 로켓 엔진의 연구)

  • Jo, Sung-Kwon;An, Sung-Yong;Kim, Jong-Hak;Yoon, Ho-Sung;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.156-164
    • /
    • 2010
  • As part of preliminary study for development of 1,200 N-class bipropellant rocket engine with the concentrated hydrogen peroxide, bipropellant engine elements were designed and experimentally tested. The catalysts of $MnO_2$ and $MnO_2$ added Pb as an addictive were compared to achieve high decomposition performance and the catalytic reactor with $MnO_2$ added Pb was designed and its decomposition efficiency of 97.2% was achieved. The autoignition tests of kerosene by decomposed hydrogen peroxide were carried out under various equivalence ratios to ignite without additional ignition sources. Autoignition were achieved in all experimental conditions and $C^*$ efficiencies at each condition were at or above 90%. From the measured thrust results, the highest value was 830 N which is in corresponds with 1,035 N at vacuum level using 94.1% theoretical $I_{sp}$.

  • PDF