• Title/Summary/Keyword: 추계학적 감마 과정

Search Result 2, Processing Time 0.014 seconds

Identification of Uncertainty on the Reduction of Dead Storage in Soyang Dam Using Bayesian Stochastic Reliability Analysis (Bayesian 추계학적 신뢰도 기법을 이용한 소양강댐 퇴사용량 감소의 불확실성 분석)

  • Lee, Cheol-Eung;Kim, Sang Ug
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.3
    • /
    • pp.315-326
    • /
    • 2013
  • Despite of the importance on the maintenance of a reservoir storage, relatively few studies have addressed the stochastic reliability analysis including uncertainty on the decrease of the reservoir storage by the sedimentation. Therefore, the stochastic gamma process under the reliability framework is developed and applied to estimate the reduction of the Soyang Dam reservoir storage in this paper. Especially, in the estimation of parameters of the stochastic gamma process, the Bayesian MCMC scheme using informative prior distribution is used to incorporate a wide variety of information related with the sedimentation. The results show that the selected informative prior distribution is reasonable because the uncertainty of the posterior distribution is reduced considerably compared to that of the prior distribution. Also, the range of the expected life time of the dead storage in Soyang Dam reservoir including uncertainty is estimated from 119.3 years to 183.5 years at 5% significance level. Finally, it is suggested that the improvement of the assessment strategy in this study can provide the valuable information to the decision makers who are in charge of the maintenance of a reservoir.

Prediction of Expected Residual Useful Life of Rubble-Mound Breakwaters Using Stochastic Gamma Process (추계학적 감마 확률과정을 이용한 경사제의 기대 잔류유효수명 예측)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.158-169
    • /
    • 2019
  • A probabilistic model that can predict the residual useful lifetime of structure is formulated by using the gamma process which is one of the stochastic processes. The formulated stochastic model can take into account both the sampling uncertainty associated with damages measured up to now and the temporal uncertainty of cumulative damage over time. A method estimating several parameters of stochastic model is additionally proposed by introducing of the least square method and the method of moments, so that the age of a structure, the operational environment, and the evolution of damage with time can be considered. Some features related to the residual useful lifetime are firstly investigated into through the sensitivity analysis on parameters under a simple setting of single damage data measured at the current age. The stochastic model are then applied to the rubble-mound breakwater straightforwardly. The parameters of gamma process can be estimated for several experimental data on the damage processes of armor rocks of rubble-mound breakwater. The expected damage levels over time, which are numerically simulated with the estimated parameters, are in very good agreement with those from the flume testing. It has been found from various numerical calculations that the probabilities exceeding the failure limit are converged to the constraint that the model must be satisfied after lasting for a long time from now. Meanwhile, the expected residual useful lifetimes evaluated from the failure probabilities are seen to be different with respect to the behavior of damage history. As the coefficient of variation of cumulative damage is becoming large, in particular, it has been shown that the expected residual useful lifetimes have significant discrepancies from those of the deterministic regression model. This is mainly due to the effect of sampling and temporal uncertainties associated with damage, by which the first time to failure tends to be widely distributed. Therefore, the stochastic model presented in this paper for predicting the residual useful lifetime of structure can properly implement the probabilistic assessment on current damage state of structure as well as take account of the temporal uncertainty of future cumulative damage.