• Title/Summary/Keyword: 추가령

Search Result 72, Processing Time 0.034 seconds

신보령1,2호기 해상교통안전진단 대상선박 추가 투입에 따른 연구 사례 소개

  • Kim, Jong-Gwan;Lee, Dong-Seop
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.499-501
    • /
    • 2013
  • 기 수행된 신보령1,2호기 해상교통안전진단을 바탕으로 신보령1,2호기에 추가 투입되는 18만DWT급 석탄운반선에 대한 추가 용역을 수행하였다. 신보령1,2호기 해상교통안전진단 대상선박 추가 투입에 따른 연구용역 사례를 토대로 기 수행된 해상교통안전진단보고서에 대상선박 추가 투입이 이루어질 경우에 대한 진단 방법을 소개하고, 도출된 문제점에 대한 해결방안을 제시하였다.

  • PDF

A Study of Regional Geomorphology in the Chugaryeong Tectonic Valley, Central Korea (추가령 구조곡의 지역지형 연구)

  • Lee, Min-Boo;Lee, Gwang-Ryul
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.4
    • /
    • pp.473-490
    • /
    • 2016
  • This study aims to analyze the regional geomorphology of the Chugaryeong Tectonic Valley which has been one of the most important areas for Korean geomorphological research. Though the Chugaryeong Tectonic Valley has been thought important for the tectonic settings and orographic processes in Korea, geomorphological and geological discussions still are sustaining for finding out evidences of the settings. The Chugaryeong valley region has many geomorphic themes such as tectonic structure, volcanics, river, mountain, terrace, lake and sediment layers. The research of the valley focuses on the comprehensive analysis of the previous references mainly including geomorphic naming, geomorphology and geology, and history of the study for estimating the origin of tectonic valley, formation of the lave plateau, change of river structure by dissection, restoration of the landform before lava eruption, and the processes and age dating of the various landforms. Conclusively, the Chugaryeong Tectonic Valley may be recognized as the linear region of the tectonic and volcanic landforms with other various applied geomorphic settings.

  • PDF

The Geodynamic Evolution of the Chugaryeong Fault Valley in a View Point of Paleomagnetism (고지자기학적 관점에서 본 추가령단층곡의 생성과 진화)

  • 이윤수;민경덕;황재하
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.555-571
    • /
    • 2001
  • The dynamic evolution of the Chugaryeong fault valley is studied by paleomagnetic works on 163 samples at 16 sites from Late Cretaceous and Quaternary volcanic rocks in the valley. Conglomerate test and stepwised thermal/alternating field demagnetization indicate that all the characteristic directions are of primary origin. Paleomagnetic pole ponsition(216.8$^{\circ}$E/7l .6$^{\circ}$N; dp=7.1$^{\circ}$, dm=10.0$^{\circ}$) for the upper par of the Jijangbong Volcanic Complex Is indistinguishable from the coeval retference pole position from the Gyeongsang Basin, which further substanciates the reliability of the Paleomagnetic data. This indicates the study area has not undergone any tectonic rotation since Late Cretaceous by uy significant reactivation of the Chugaryeong fault valley. The Quaternary pole position (134.2$^{\circ}$E/86.5$^{\circ}$N; $A_{95}$=7.1 $^{\circ}$) from the Jeongog Basalt reflects the present geocentric axial dipole field for the area, supporting the above conclusion. Unlike the upper part, paleomasnelic directions of the lower part of the Jijangbong Volcanic Complex show random distrinution between sites. We interpret that the early stage of the volcanic activity was created by sinistral strike slip motion of the Chugaryeong fault during early Late Cretaceous. The creation and evolution of the Chugaryeong fault valley emphasize the significance of the kinematic FR (folding ruler) model in east Asia.

  • PDF

Displacement of Dongducheon and Wangsukcheon Fault Observed by Gravity Field Interpretation (중력장 해석으로 관측된 동두천 및 왕숙천 단층의 변위)

  • Sungchan Choi;Sung-Wook Kim;Eun-Kyeong Choi;Younghong Shin
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.73-81
    • /
    • 2024
  • To estimate the tectonic displacement of the Chugaryeong Fault System (CFS), gravity surveys were conducted along the Dongducheon fault (DF) and the Wangsukcheon fault (WF). A total of 1,100 stations for the DF and WF regions have been added to the current gravity database. The results of the gravity interpretation indicate that (1) the dextral displacement of the DF is about 3,000 m, similar to the tectonic displacement (2,900-3,100 m) shown in the geological map. (2) The dextral displacement of the WF is about 3,200 m. (3) Taken together, the tectonic displacement of the CFS is estimated to be about 3,000 m on average. To investigate more accurate tectonic displacement of the CFS, further gravity surveys is planned for the Pocheon fault, Gyeonggang fault, and Inje fault.

Reactivated Timings of Some Major Faults in the Chugaryeong Fault Zone since the Cretaceous Period (추가령단층대 주요 단층의 백악기 이후 재활동 연대)

  • Chung, Donghoon;Song, Yungoo;Park, Changyun;Kang, Il-Mo;Choi, Sung-Ja;Khulganakhuu, Chuluunbaatar
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • Recently developed illite-age-analysis (IAA) approach has been applied to determine the multiple events for the Singal and Wangsukcheon faults in the Chugaryeong fault belt, Korea. Fault reactivated events during Late Cretaceous to Paleogene events($69.2{\pm}0.3$ Ma and $27.2{\pm}0.5$ Ma) for the Singal fault and of $75.4{\pm}0.8$ Ma for the Wangsukcheon fault were determined by combined approach of the optimized illite-polytype quantification and the K-Ar age-dating of clay fractions separated from the fault clays. These absolute geochronological determinations of the multiple tectonic events recorded in the Chugaryeong fault belt are crucial to establish the tectonic evolution of the Korean Peninsula since Late Cretaceous.

Volcanic landforms in Korea (한국의 화산지형 연구)

  • Kim, Taeho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.79-96
    • /
    • 2011
  • Volcanic landforms are classified into the volcanic edifice produced through constructive processes of eruption and the crater generated by destructive processes of eruption. Both landforms are distributed around Korean Peninsula including attaching islands. However, only a few regions such as Mt. Baekdu, Jeju Island, Ulleung Island, and Chugaryeong, which are closely related with the volcanic eruption occurred during the Quaternary, could be considered as a volcanic landform. It results in categorizing the volcanic landform as an unusual topography in Korea. The study of Korean researchers on the volcanic landform were regularized in 1970s on Jeju Island, in 1980s on Ulleung Island, and in 1990s on Mt. Baekdu, respectively. Oreums and lava tubes in Jeju Island have been also examined since 1980s. Compared with other fields of geomorphology, researches as well as researchers on the volcanic landform are very few in Korea. Geomorphologists are expected to perform an active research in that the volcanic landform of Korea have diverse values.