• Title/Summary/Keyword: 최종강도 해석

Search Result 214, Processing Time 0.024 seconds

A Method for Calculation of Compressive Strength of a One-Sided Stiffened Plate (편면 보강판의 압축강도 해석을 위한 한 방법)

  • C.D. Jang;S.I. Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.117-124
    • /
    • 1991
  • In this paper, a method to overcome inefficiency of the finite element method in the calculation of compressive strength of one-sided stiffened plates, is proposed. In this method the collapse modes of stiffened plates are assumed as follows. a) Overall buckling $\rightarrow$ Overall collapse b) Local buckling $\rightarrow$ Overall collapse c) Local buckling $\rightarrow$ Local collapse In each collapse mode, shape of deflection is assumed, and then elastic large deformation analysis based on the Rayleigh-Ritz method is carried out. One-sided stiffening effect is considered by taking into account of the moment due to eccentricity. Plastic analysis by assuming hinge lines is also carried out. The ultimate strength of a stiffened plate is obtained as the point of intersection of the elastic analysis curve and the plastic one. From this study, it is concluded that the angles between the plastic hinge lines in plastic collapse mode are determined as the ones which give the minimum collapse load, and these angles are different from the ones assumed in the previous studies. Minimum stiffness ratios can also be calculated. Calculated results according to this method show good agreements with the results by the finite element method.

  • PDF

A Simple Formula for Ultimate Strength Prediction of Hull Girders (선각거더의 최종강도 간이계산식)

  • J.K. Paik;A.E. Mansour
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.83-97
    • /
    • 1995
  • The aim of this study is to derive a simple formula for predicting ultimate strength of hull girders under vertical bending moment. The existing formulas have been reviewed and classified into analytical approach, empirical approach and linear approximate approach. It is known that the ship hull will reach the ultimate limit state if both collapse of the compression flange and yielding of the tension flange occur. Side shells in the vicinity of the compression and tension flanges will often fail also, but the material around the final neutral axis will remain in the elastic state. Based on this observation, a credible distribution of longitudinal stresses around the hull section at the overall collapse state is assumed, and an explicit analytical formula is derived. The accuracy of the formula has been verified by a comparison of the experimental and the numerical results.

  • PDF

Reliability Assessment against Ultimate Bending Moment of Ships′ Hull Girder (선체의 최종굽힘 모멘트에 대한 신뢰성 검토)

  • Joo-Sung Lee;P.D.C. Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.103-112
    • /
    • 1992
  • The ultimate bending moment of ships is one of the principle strength considered in ship design. Several methods have been proposed to predict the ultimate bending moment and its major part is, in general, predicting the ultimate compressive strength of stiffened panels. In this paper, made is the review on the methods and formulae of predicting the ultimate compressive strength and they are applied to predicting the ultimate bending moment. Safely levels of three bulk carriers have been derived evaluated for two loading conditions, stray, light ship condition and full load condition, and wave bending by Classification Society Rule(ABS, DnV and Lloyd Rule). The present reliability analysis problem is strictly non-linear and the Advanced First-Order Reliability Method has been used. From the results of parametric studies, the methods of predicting the ultimate compressive strength of stiffened panels are compared from the view point of their applicability to the reliability assessment of ships structures. The paper ends wish a brief discussion drawn from the parametric studies and the extension of the study is described.

  • PDF

Estimation of Buckling and Ultimate Strength of a Perforated Plate under Thrust (면내압축하중을 받는 유공판의 좌굴 및 최종강도 평가에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.129-135
    • /
    • 2004
  • Plate has cutout inner bottom and girder and floor etc in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and change of freight, piping etc. Because cutout's existence gnaws in this place, and, elastic budding strength by load rouses large effect in ultimate strength. Therefore, perforated plate elastic budding strength and ultimate strength is one of important design criteria which must examine when decide structural elements size at early structure design step if ship. Therefore, and, reasonable elastic budding strength about perforated plate need design ultimate strength. Calculated ultimate strength change several aspect ratioes and cutout's dimension, and thickness in this investigation. Used program applied ANSYS F.E.M code based on finite element method

  • PDF

Collapse Analysis of Ultimate Strength for the Aluminium Stiffened Plate subjected to Compressive Load (알루미늄 보강판의 압축 최종강도 붕괴 해석)

  • Park, Joo-Shin;Ko, Jae-Yong;Kim, Yun-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.825-831
    • /
    • 2007
  • The use of high-strength aluminum alloys for ship and offshore structure generally has many benefits compared to the structural steels. These materials are used widely in a variety of fields, especially in the hull and deck of high speed craft, box-girder of bridges, deck and side plates of offshore structure. The structural weight can be reduced using these aluminum structure, which can enable high speed The characteristics of stress-strain relationship of aluminum structure are fairly different from the steel one, because of the influence of Heat Affected Zone(HAZ) by the welding processing. The HAZ of aluminum is much wider than that of steel with its high heat conductivity. In this paper, the ultimate strength characteristics of aluminum stiffened panel subjected to axial loading, such as the relationship between extent of HAZ and the behavior of buckling/ultimate strength, are investigated through the Finite Element Analysis with varying its range.

Post-Buckling Behaviour and Buckling Strength of the Circular Cylinder Under Axial Compression (압축하중을 받는 원통실린더의 후좌굴 거동 및 좌굴강도)

  • Koo, Bon Guk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.260-266
    • /
    • 2018
  • Cylindrical shells are often used in the construction of ship and land-based structures such as deck plating with a camber, side shell plating for fore and aft part pipes, as well as storage tanks. It has been believed that such curved shells can be modeled fundamentally as a part of the cylinder under axial compression. From the estimations made based on cylindrical models, it is known that in general, curvature increases the buckling strength of a curved shell when subjected to axial compression, and the same curvature is also expected to increase the overall strength. A series of elastic large deflection analyses were conducted in order to clarify the fundamentals observed in the buckling and post-buckling behaviour of circular cylinders under axial compression. In the present paper, an FE-series analysis has been performed based on the elastic large deflection behaviour, and the effect of parameters has been clarified. The ultimate strength behavior of the circular cylinder was found to be significantly influenced by both the initial deflection and the FE-modeling method.

Development of Ultimate Strength Design Formula considering Buckling under Longitudinal and Transverse Axial Compressive Load (종횡방향 압축하중을 받는 유공판의 최종강도 설계식 개발)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.3 s.109
    • /
    • pp.173-179
    • /
    • 2006
  • A number of perforated plates are utilized for the passage of the crew and the equipment, reducing weight and the arrangement of piping. Hull girders in double bottom and floor plates are the typical parts which have those plates in a ship structure, and the perforated plate is usually positioned at the place which has less loading without local strength problems. In the case of utilizing the plate inevitably at the place which has large strength, an opening of the plate has large effect on the buckling strength due to in-plane rigidity and ultimate strength. Therefore the assessments of the elastic buckling strength and the ultimate strength for the perforated plate are the essential requirements for determining the dimensions of the parts at the initial design stage. With above reason, a need of the reasonable assessments for the elastic buckling strength and the ultimate strength has evolved. The numerical series analysis with the consideration of the effect due to various aspect ratios and slenderness ratios were performed using finite element method in this research. Simple formulas for the design are also proposed from the above analysis.

A Study on the Buckling Strength of Perforated Plates for 60M Twin-hull Car-ferry (60M급 쌍동형 카페리 구조의 유공판 좌굴강도 연구)

  • Seo, Kwang-Cheol;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.126-132
    • /
    • 2018
  • This paper discusses about results of advanced buckling strength design for several kinds of perforated plated in the twin-hull car-ferry. For medium / small sized high speed vessels with a length of more than 50 meters and a length / width ratio of more than 12, such as car-ferries, it is highly possible that the buckling strength becomes weak due to the relatively thin thickness and the use of low strength capacity such as mild steel. Especially, it becomes big problem about weak buckling rigidity around the opening to access purpose in the perforated. As regarding safety design point of view for perforated plate, it is necessary to clarify buckling strength and ultimate strength by the distribution of in-plane load distribution around the opening. In this study, nonlinear series analysis using ANSYS was performed to clarify the influence of parameters such as aspect ratio, opening ratio and opening shape affecting the buckling and ultimate strength characteristics of the perforated plate under axial compression and we are derived the optimum design as buckling strength point of view. Based on these results, the governing factor determining the buckling strength of the perforated plate was the opening ratio, and the aspect ratio and the shape of the hole were not influenced.

Estimation of Buckling and Plastic Behaviour according to the Analysis Model of the Stiffened Plate (보강판의 해석모델에 따른 좌굴 및 소성거동 평가)

  • Ko, Jae-Yong;Oh, Young-Cheol;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.271-279
    • /
    • 2007
  • Ship structures are basically an assembly of plate elements and estimation load-carrying capacity or the ultimate strength is one of the most important criterion for estimated safety assessment and rational design on the ship structure. Also, Structural elements making up ship plated structures do not work separately against external load. One of the critical collapse events of a ship structure is the occurrence of overall buckling and plastic collapse of deck or bottom structure subjected to longitudinal bending. So, the deck and the bottom plates are reinforced by a number af longitudinal stiffeners to increase their strength and load-carrying capacity. For a rational design avoiding such a sudden collapse, it is very important to know the buckling and plastic behaviour or collapse pattern of the stiffened plate under axial compression. In this present study, to investigate effect af modeling range, the finite element method are used and their results are compared varying the analysis ranges. When making the FEA model, six types of structural modeling are adopted varying the cross section of stiffener. In the present paper, a series of FEM elastoplastic large deflection analyses is performed on a stiffened plate with fiat-bar, angle-bar and tee-bar stiffeners. When the applied axial loading, the influences of cross-sectional geometries on collapse behaviour are discussed. The purpose of the present study is examined to numerically calculate the characteristics of buckling and ultimate strength behavior according to the analysis method of ship's stiffened plate subject to axial loading.

A Study on the Ultimate Strength Behavior according to Modeling Range of the Stiffened Plate (선체보강판의 모델링범위에 따른 최종강도거동에 관한 연구)

  • Park, Joo-Shin;Ko, Jae-Yong;Park, Sung-Hyeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.35-39
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used On this study, to investigate effect of modeling range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of merchant ship structures. For FHA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF