• Title/Summary/Keyword: 최적pH

Search Result 3,342, Processing Time 0.028 seconds

Evaluation of Antimicrobial Activities of Rhubarb Extracts on Putrefactive Microorganisms Related to Soybean Curd (Doobu) (두부 부패 미생물에 대한 대황(Rhubarb) 추출물의 항균 활성 평가)

  • Kim, Chul-Jai;Suh, Hee-Ji;Chung, Hee-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.2
    • /
    • pp.225-231
    • /
    • 2006
  • 대황(Rhubarb)은 중국과 일본에서 혈액 순환제, 진통제, 신장치료제 등으로 전통적으로 사용되고 있는 약용식물이다. 이 연구에서는 한국산 R. undulatum L.의 뿌리 추출물, 미국산 R. rhabarbarum L.과 중국산 R. palmatum L.의 줄기 추출물의 두부 부패에 관여하는 미생물에 대한 항균 활성을 평가하였다. Rhubarb의 최적 추출을 위해서 각각 50%, 70%, 80% 에탄올을 용매로 사용하였으며, 항균 활성은 Kirby-Bauert test, minimum inhibitory concentration (MIC)과 minimum bactericide concentration (MBC)에 의해서 평가되었다. Kirby-Bauert test 결과, R. undulatum L.의 뿌리 추출물은 대부분 두부 부패균에 대해서 항균 활성을 가지는 것으로 나타났으며, R. rhabarbarum L.의 줄기 추출물의 경우는 $20{\mu}g/disc$의 농도에서는 항균 활성이 거의 나타나질 않았으나, 고농도로 갈수록 높은 항균 활성을 나타내었다. 또한 R. palmatum L.의 줄기 추출물은 고농도로 갈수록 항균 활성이 높아졌으나, Pseudomonas aeruginosa에 관해서는 항균 활성이 나타나지 않았다. MIC와 MBC에 의한 항균 활성 평가실험에서는, 세 종류의 rhubarb 추출물 중에서 phenolic 화합물이 가장 많이 함유되어 있는 R. undulatum L.의 뿌리 추출물보다 R. rhabarbarum L.의 줄기 추출물이 MIC와 MBC 값이 낮았다. 이는 phenolic 화합물의 양 이외에 낮은 pH가 항균 활성에 영향을 준 것으로 판단된다. 본 연구를 통해서 rhubarb 추출물은 두부 부패에 관여하는 미생물에 대해서 항균 활성을 가지는 것으로 나타났으며, 천연 항균제로써 식품에 적용 가능성이 있는 것으로 평가되었다. 87.1%이었으며, 아침을 매일 먹는 채식남학생은 78.8%, 비채식남학생은 33.3%, 채식여학생 47.1%, 비채식여학생 39.6%이었다. 또한 식사의 양은 과식한다는 응답이 채식남학생 24.2%, 비채식남학생 38.1%, 채식여학생은 29.4%, 비채식여학생 40.6%으로 비책식군의 과식율이 높았다. 5. 식품 섭취빈도는 두부 및 콩제품을 매일 섭취하는 경우는 채식남학생 54.6%, 비채식남학생 16.7%, 채식여학생은 38.2%, 비채식여학생이 16.8%이었다. 우유 및 유제품을 매일 섭취하는 경우는 채식남학생 6.1%, 비채식남학생 33.3%, 채식여학생 14.7%, 비채식여학생은 21.8%이었으며, 녹차, 커피 등 차를 마시지 않는다는 비율은 채식남학생 69.7%, 비채식남학생 28.6%, 채식여학생 29.4%, 비채식여학생 25.7%이었다. 인스턴트 식품을 매일 섭취한다는 응답율이 채식남학생 9.1%, 비채식남학생 21.4%, 채식여학생은 17.7%, 비채식여학생은 14.9%이었다. 6. 운동, 체중 조절 등에 대한 조사 결과 항상 운동을 하는 경우는 채식남학생 30.3%, 비채식남학생 28.6%, 채식여학생 14.7%, 비채식여학생 18.8%이었으며 운동시간은 $1{\sim}2$시간 하는 경우는 채식남학생 30.3%, 비채식남학생 38.1%, 채식여학생은 8.8%, 비채식여학생은 17.8%이었다. 체중에 만족하는 정도를 보면 채식남학생 57.6%, 비채식남학생 23.8%, 채식여학생은 23.5%, 비채식여학생은 15.8%가 만족한다고 하였다. 체중 조절 경험에서 경험이 있는 경우가 채식남학생 3.0%, 비채식남학생 31.0%, 채식여학생은 23.5%, 비채식여학생 31.7%이었다. 7. 골밀도 BQI값과와 몇가지 요인의 상관관계를 살펴보았을때, 채식남학생은 영양보충제의 섭취와 유의적인 양의 상관관계를, 해조류의 섭취정도와 유의적인 음의 상관관계를 나타내었다.

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF