• Title/Summary/Keyword: 최적 점화시기

Search Result 22, Processing Time 0.028 seconds

SI Engine Closed-loop Spark Advance Control Using Cylinder Pressure (실린더 압력을 이용한 SI엔진의 페루프 점화시기 제어에 관한 연구)

  • Park, Seung-Beom;Yun, Pal-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2361-2370
    • /
    • 2000
  • The introduction of inexpensive cylinder pressure sensors provides new opportunities for precise engine control. This paper presents a control strategy of spark advance based upon cylinder pressure of spark ignition engines. A location of peak pressure(LPP) is the major parameter for controlling the spark timing, and also the UP is estimated, using a multi-layer feedforward neural network, which needs only five pressure sensor output voltage samples at -40˚, -20˚, 0˚, 20˚, 40˚ after top dead center. The neural network plays an important role in mitigating the A/D conversion load of an electronic engine controller by increasing the sampling interval from 10 crank angle(CA) to 20˚ CA. A proposed control algorithm does not need a sensor calibration and pegging(bias calculation) procedure because the neural network estimates the UP from the raw sensor output voltage. The estimated LPP can be regarded as a good index for combustion phasing, and can also be used as an MBT control parameter. The feasibility of this methodology is closely examined through steady and transient engine operations to control individual cylinder spark advance. The experimental results have revealed a favorable agreement of individual cylinder optimal combustion phasing.

Engine Ignition Timing Control Circuit Using Microcomputer (마이크로 컴퓨터를 이용(利用)한 엔진점화시기(點火時期) 제어회로(制御回路))

  • Min, Y.B.;Lee, K.M.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.1
    • /
    • pp.45-52
    • /
    • 1987
  • In order to improve the thermal efficiency of an internal combustion engine, various ignition timing control systems were examined and the best one was chosen. The parts used for the systems were a microcomputer system with DAS, 8 bit output port (D-FLIP FLOP), three types of isolation circuit, two types of ignition timing pulse generator, three types of switching circuit and two types of high voltage ignition circuit. Most systems did not operate well due to the effects of electromagnetic waves and surge currents occurring when the ignition began or ended with resulting high voltage. The best ignition timing control system was found to be the combination of (microcomputer system)-(ignition timing pulse generator using step motor position control pick-up)-(switching circuit using TR logic)-(high voltage ignition circuit using CDI).

  • PDF

A Impact Study on Combustion Characteristics of the Engine by Changing the Gasoline Properties (휘발유 물성변화가 엔진의 연소특성에 미치는 영향 연구)

  • Noh, Kyeong-ha;Im, Sang-bin;Lee, Min-ho;Kim, Ki-ho;Ha, Jong-han
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.166-174
    • /
    • 2015
  • This study examined combustion characteristics by selecting the fuel which have a different physical properties compared to gasoline in order to examine the effects of vehicle performance and environment depending on the physical properties. The experiment examined the combustion characteristic in the optimum ignition timing according to the physical properties change and the lean burn by performing control about ignition timing and air-fuel ratio for each fuel, and it was also evaluated the exhaust gas according to the experiment. We used a single-cylinder engine for the experiment, and tested for gasoline properties change by selecting a fake fuel that beyond the fuel quality standards in 석대법. As a result, in the case of the selected fuel showed a difference in Octane and distillation characteristics, vapor pressure and it was also found to unstable combustion, and leads to a large amount of harmful exhaust gas.

A study on the development of the electronic control system for the gasoline engine. (가솔린 엔진용 전자제어 시스템 개발에 관한 연구)

  • Yoon, Hong-Jung;Kim, Nam-Wook;Kim, Yong-Deak
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1203-1205
    • /
    • 1987
  • 가솔린 엔진용 전자 제어 에뮬레이션 시스템은 엔진의 운전 상태를 알려 주는 각종 센서로 감지한 정보를 A/D변환기를 통해 마이크로프로세서에 입력시키고, 이 정보를 이용하여 운전 상태를 분석한 후 엔진이 푤요로 하는 연료량, 점화시기, 배기가스의 재순환량, 공회전수 등을 전자적으로 제어하여 엔진의 최적제어를 실현시킴으로서 연료소비율 및 배기가스 중 공해물질 함량을 감소시키기 위한 장치이다.

  • PDF

A Study on Reduction of Exhaust Gas Temperature in Retrofitted LPG Fueled Engine Based Medium-Duty Diesel Engine (중형 디젤을 기초한 LPG엔진에서 배기가스온도 저감 연구)

  • 최경호;조웅래
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.63-68
    • /
    • 2003
  • The purpose of this study was to investigate reduction of exhaust gas temperature in LPG conversion engine from diesel. A conventional diesel engine was modified to a LPG(Liquified Petroleum Gas) engine that diesel fuel injection pump was replaced by the LPG fuel system. The research was peformed with measurement of exhaust gas temperature by varying spark ignition timing, air-fuel ratio, compression ratio, EGR ratio and different compositions of butane and propane. The major conclusion of this work were followed. (i) Exhaust gas temperature was decreased and power was increased with the advanced spark ignition timing. (ii) Exhaust gas temperature was decreased with lean and rich air-fuel ratio. (iii)Exhaust gas temperature was decreased and power was increased with the higher compression ratio. (iv) Engine power and exhaust temperature were not influenced by varied butane/propane fuel compositions. (v) Finally, one of the important parameters in reduction of exhaust gas temperature is spark ignition timing among the parameters in this study.

Study of Combustion Characteristics with Variations of Combustion Parameter in Ultra-Lean LPG Direct Injection Engine (연소제어인자의 변화에 따른 직접분사식 초희박 LPG엔진의 연소특성 연구)

  • Park, Yun Seo;Park, Cheol Woong;Oh, Seung Mook;Kim, Tae Young;Choi, Young;Lee, Yong Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.607-614
    • /
    • 2013
  • Nowadays, automotive manufacturers have developed various technologies to improve fuel economy and reduce harmful emissions. The ultra-lean direct injection engine is a promising technology because it has the advantage of improving thermal efficiency through the deliberate control of fuel and ignition. This study aims to investigate the development of a spray-guided-type lean-burn LPG direct injection engine through the redesign of the combustion system. This engine uses a central-injection-type cylinder head in which the injector is installed adjacent to the spark plug. Fuel consumption and combustion stability were estimated depending on the ignition timing and injection timing at various air-fuel ratios. The optimal injection timing and ignition timing were based on the best fuel consumption and combustion stability.

Design and Development of an Electronic Control Unit of the Automobile Engine for Optimal Fuel Injection and Spark Timing Control (최적의 연료분사와 점화시기 제어를 위한 자동차 엔진용 전자제어장치 설계 및 개발)

  • 김태훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.644-654
    • /
    • 2001
  • In this paper, an electronic control unit of the automobile engine for optimal fuel injection an spark timing control has been designed and developed. This system includes hardware and software for a precise control of fuel injection and ignition timing. Especially, the crank angle sensor provides two separate signals: One is the position signal (POS) which indicates 180 degree pulses per revolution, and the other is the reference signal (REF) that represents each cylinder individually. Consequently, the developed engine control system has been able to control fuel injection and ignition timing more quickly and accurately. Through the experiment, it has been found that the fuel injection duration and the position of MBT have been influenced by coolant temperature, air flow rate and engine speed.

  • PDF

A Study on the Comparison of Fuel Combustion Characteristics between Gasoline and Liquified Petroleum Gas on SI Engine (SI 엔진에서의 가솔린과 액화석유가스 연료의 연소특성 비교 연구)

  • Park, S.C.;Ko, Y.N.;Kwon, Y.W.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.12-17
    • /
    • 2008
  • The purpose of this study is to analyse and compare the fuel combustion characteristics between LPG and gasoline on SI engine. Pressures of combustion chamber were measured on the state that engine speed was 2000rpm and BMEP was 2.0bar And we measured pressures of combustion chamber regarding variation of the MBT We could know that the combustion pressure of LPG fuel use engine is appeared lower than that of gasoline fuel use engine. At the lean mixture ratio area we could blow that Ignition timings are pulled very forward, and ignition timing of LPG fuel is advanced to $5\sim12^{\circ}$ CA than gasoline fuel. We learned that the value of coefficient of variation of LPG fuel is higher than gasoline fuel.

  • PDF

A Nonlinear Dynamic Engine Modeling for Controller Design (제어기 설계를 위한 비선형 동적 엔진 모델링)

  • 윤팔주;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.167-180
    • /
    • 1999
  • A control-oriented nonlinear dynamic engine model is developed to represent a spark ignited engine over a wide range of operating conditions. The model includes intake manifold dynamics,. fuel film dynamics, and engine rotational dynamics with transport delays inherent in the four stroke engine cycles. The model is mathematically compact enough to run in real time, and can be used as an embedded model within a control algorithm or an observer. The model is validated with engine-dynamometer experimental data, and can be used in design and development of a powertrain controller.

  • PDF

Influence of Compression Ratio on Engine Performance in Heavy-duty LPG Single-cylinder Engine (대형 LPG 단기통엔진에서 압축비가 기관성능에 미치는 영향)

  • 김진호;최경호
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.160-165
    • /
    • 2002
  • The heavy-duty LPG-fueled single cylinder engine was designed and developed as a fundamental equipment for analyzing combustion processes and emission performances. The cylinder head and the piston crown were modified to fire the LPG in the engine. The flywheel was also fabricated to minimize the vibration of the single cylinder engine. The size of bore and stroke of the tested engine are 130 mm and 140 mm, respectively. Compression ratios were varied 8 to 9 with different piston crown shapes. The developed single cylinder engine operates at 1,000 rpm for this work. The major conclusions of this work are; (1) the power of the developed engine was peaked at the condition of equivalence ratio 1.0 at three different compression ratios; (2) the power is slightly increased with the increase of compression ratio; (3) the optimum ignition timing is retarded with the increase of compression ratio ranged 2 to 10 crank angle.