• Title/Summary/Keyword: 최적 센서 배치

Search Result 70, Processing Time 0.026 seconds

Interconnection Problem among the Dense Areas of Nodes in Sensor Networks (센서네트워크 상의 노드 밀집지역 간 상호연결을 위한 문제)

  • Kim, Joon-Mo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.2
    • /
    • pp.6-13
    • /
    • 2011
  • This paper deals with the interconnection problem in ad-hoc networks or sensor networks, where relay nodes are deployed additionally to form connections between given nodes. This problem can be reduced to a NP-hard problem. The nodes of the networks, by applications or geographic factors, can be deployed densely in some areas while sparsely in others. For such a case one can make an approximation scheme, which gives shorter execution time, for the additional node deployments by ignoring the interconnections inside the dense area of nodes. However, the case is still a NP-hard, so it is proper to establish a polynomial time approximation scheme (PTAS) by implementing a dynamic programming. The analysis can be made possible by an elaboration on making the definition of the objective function. The objective function should be defined to be able to deal with the requirement incurred by the substitution of the dense area with its abstraction.

A Centralized Deployment Protocol with Sufficient Coverage and Connectivity Guarantee for WSNs (무선 센서 네트워크에서 유효 커버리지 및 접속성 보장을 위한 중앙 집중형 배치 프로토콜)

  • Kim, Hyun-Tae;Zhang, Gui-Ping;Kim, Hyoung-Jin;Joo, Young-Hoon;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.683-690
    • /
    • 2006
  • Reducing power consumption to extend network lifetime is one of the most important challenges in designing wireless sensor networks. One promising approach to conserving system energy is to keep only a minimal number of sensors active and put others into low-powered sleep mode, while the active sensors can maintain a connected covet set for the target area. The problem of computing such minimum working sensor set is NP-hard. In this paper, a centralized Voronoi tessellation (CVT) based approximate algorithm is proposed to construct the near optimal cover set. When sensor's communication radius is at least twice of its sensing radius, the covet set is connected at the same time; In case of sensor's communication radius is smaller than twice of its sensing radius, a connection scheme is proposed to calculate the assistant nodes needed for constructing the connectivity of the cover set. Finally, the performance of the proposed algorithm is evaluated through theoretical analysis and extensive numerical experiments. Experimental results show that the proposed algorithm outperforms the greedy algorithm in terms of the runtime and the size of the constructed connected cover set.

An Efficient Data Distribution Scheme for Maximizing the Amount of Data Stored in Solar-powered Sensor Networks (태양 에너지 기반 센서 네트워크에서 데이터 저장량을 최대화하기 위한 효율적인 데이터 분배 기법)

  • Noh, Dong-Kun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.1
    • /
    • pp.55-59
    • /
    • 2010
  • Most applications for solar-powered wireless sensor networks are usually deployed in remote areas without a continuous connection to the external networks and a regular maintenance by an administrator. In this case, sensory data has to be stored in the network as much as possible until it is uploaded by the data mule. For this purpose, a balanced data distribution over the network should be performed, and this can be achieved efficiently by taking the amount of available energy and storage into account, in the system layer of each node. In this paper, we introduce a simple but very efficient data distribution algorithm, by which each solar-powered node utilizes the harvested energy and the storage space maximally. This scheme running on each node determines the amount of energy which can be used for a data distribution as well as the amount of data which should be transferred to each neighbor, by using the local information of energy and storage status.

Verification of External Magnetization based EM Technique for Diagnosing Residual Tensile Stress in Aged PSC Structures (노후 PSC 구조물의 잔여 긴장 응력 진단을 위한 외부 자화 EM 기법 검증)

  • Soon-Jeon Park;Sehwan Park;Jaehoon Choi;Kyo-Young Jeon;Junkyeong Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.251-257
    • /
    • 2023
  • This study entailed an investigation of a tensile stress measurement method for prestressed concrete (PSC) tendons by utilizing external magnetization. The target of this study are PS structures that have been constructed and in use. An optimal external magnetization based elasto-magnetic (EM) sensor was designed using finite element analysis considering various factors, such as coil arrangement and size, that could influence the PS tendons inside the PSC girder. The residual tensile stress resulting from the external magnetization of the girder was then determined. Further, theoretical verification was performed using the numerical and material data used in the finite element analysis for sensor design. The calculated values of strength of magnetization at the target location were matched with the finite element analysis results. Thus, the designed sensor and the feasibility of magnetizing the tendons inside the PSC I-girder using an EM sensor were validated.

Optimal Configuration of Redundant Inertial Sensors with Uncertainty (불확실성을 고려한 중복 관성센서의 최적 배치)

  • Shim Duk-Sun;Yang Cheol-Kwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.2
    • /
    • pp.81-86
    • /
    • 2005
  • In this paper we consider an optimal configuration problem for redundant inertial sensors which have uncertainty such as misalignment, scale factor error. The optimal configuration problem is treated from the viewpoint of navigation accuracy. We propose a necessary and sufficient condition for the optimal configuration of redundant sensors with no uncertainty, and a sufficient condition for the optimal configuration of redundant sensors with uncertainty. Finally we propose a condition for the optimal configuration based both navigation performance and FDI(fault detection and isolation).

Comparison of Active Sonar Target Positioning Performance and Optimal Sensor Arrangement (능동 소나 위치 추정 성능 비교 및 최적 수신망 배치)

  • 박치현;홍우영;고한석;김인익
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.224-232
    • /
    • 2003
  • In this paper, efficient deployment method of sensors and target positioning performance with respect to measurement error are dealt with. Active sonar can be categorized into Monostatic, Bistatic, Multistatic sonar, and characteristics of respective sonar are different. Assuming that each sensor can receive range and angular information, we compare the performance of Monostatic, Bistatic, and Multistatic systems. And we suggest Weighted least square (WLS) which gives the weight to former case, LS. In particular. adopting suggested method we investigate the target positioning performance according to number of sensor, distance from transmitter to receiver, and propose efficient arrangement rule for Multistatic sonar configurations. According to the experimental results, RMSE of Multistatic sonar is found to be superior to Monostatic and Bistatic by 35.98%. 37.45% respectively, and WLS is superior to LS approximately by 7.4% in average. Furthermore, as the difference of respective sensor's variance is large, it is observed that the improvement ratio of target positioning performance is increased.

Energy Modeling For the Cluster-based Sensor Networks (클러스터 기반 센서 네트워크의 에너지 모델링 기법)

  • Choi, Jin-Chul;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.14-22
    • /
    • 2007
  • Wireless sensor networks are composed of numerous sensor nodes and exchange or recharging of the battery is impossible after deployment. Thus, sonsor nodes must be very energy-efficient. As neighboring sensor nodes generally have the data of similar information, duplicate transmission of similar information is usual. To prevent energy wastes by duplicate transmissions, it is advantageous to organize sensors into clusters. The performance of clustering scheme is influenced by the cluster-head election method and the size or the number of clusters. Thus, we should optimize these factors to maximize the energy efficiency of the clustering scheme. In this paper, we propose a new energy consumption model for LEACH which is a well-known clustering protocol and determine the optimal number of clusters based on our model. Our model has accuracy over 80% compared with the simulation and is considerably superior to the existing model of LEACH.

An Energy Optimization Algorithm for Maritime Search and Rescue in Wireless Sensor Networks (무선 센서 네트워크에서 해양 수색 및 구조를 위한 에너지 최적화 알고리즘)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.676-682
    • /
    • 2018
  • In wireless sensor networks, we propose an optimization algorithm in order to minimize the consumed energy of nodes for maritime search and rescue. In the marine environment, search and rescue operations are mainly performed on the surveillance side and passively on the rescued side. A self-configurable wireless sensor network can build a system that can send rescue signals in the operations. A simulated annealing algorithm is proposed to minimize the consumed energy of nodes in the networks with many nodes. As the density of nodes becomes higher, the algorithmic computation will increase highly. To search the good result in a proper execution time, the proposed algorithm proposes a new neighborhood generating operation and improves the efficiency of the algorithm. The proposed algorithm was evaluated in terms of the consumed energy of the nodes and algorithm execution time, and the proposed algorithm performed better than other optimization algorithms in the performance results.

A Design of Enhanced Lower-Power Data Dissemination Protocol for Wireless Sensor Networks (무선 센서 네트워크를 위한 개선된 저전력형 데이터 확산 프로토콜 설계)

  • Choi Nak-Sun;Kim Hyun-Tae;Kim Hyoung-Jin;Ra In-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.437-441
    • /
    • 2006
  • Wireless sensor network consists of sensor nodes which are disseminated closely to each other to collect informations for the various requests of a sensor application applied for sensing phenomenons in real world. Each sensor node delivers sensing informations to an end user by conducting cooperative works such as processing and communicating between sensor nodes. In general, the power supply of a sensor node is depends on a battery so that the power consumption of a sensor node decides the entire life time of a sensor network. To resolve the problem, optimal routing algorithm can be used for prolong the entire life time of a sensor network based on the information on the energy level of each sensor node. In this paper, different from the existing Directed Diffusion and SPTN method, we presents a data dissemination protocol based on lower-power consumption that effectively maximizes the whole life time of a sensor network using the informations on the energy level of a sensor node and shortest-path hops. With the proposed method, a data transfer path is established using the informations on the energy levels and hops, and the collected sensing information from neighboring nodes in the event-occurring area is merged with others and delivered to users through the shortest path.

  • PDF

Development of Simulation Method to Design Rover's Camera System for Extreme Region Exploration (극한지 탐사 로버의 카메라 시스템 설계를 위한 시뮬레이션 기법 개발)

  • Kim, Changjae;Park, Jaemin;Choi, Kanghyuk;Shin, Hyu-Soung;Hong, Sungchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.271-279
    • /
    • 2019
  • In extreme environment regions, unmanned rovers equipped with various sensors and devices are being developed for long-term exploration on behalf of humans. On the other hand, due to the harsh weather conditions and rough terrain, the rover camera has limited visible distance and field of view. Therefore, the rover cameras should be located for safe navigation and efficient terrain mapping. In this regard, to minimize the cost and time to manufacture the camera system on a rover, the simulation method using the rover design is presented to optimize the camera locations on the rover efficiently. In the simulation, a simulated terrain was taken from cameras with different locations and angles. The visible distance and overlapped extent of camera images, and terrain data accuracy calculated from the simulation were compared to determine the optimal locations of the rover's cameras. The simulated results will be used to manufacture a rover and camera system. In addition, self and system calibrations will be conducted to calculate the accurate position of the camera system on the rover.