• Title/Summary/Keyword: 최적 보강

Search Result 364, Processing Time 0.032 seconds

Maximization of the natural frequency of a structure using shape optimization (형상 최적화를 통한 구조물의 고유진동수 최대화)

  • 서범석;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.167-172
    • /
    • 2001
  • 구조최적화는 기계구조물의 동특성을 변경하기 위하여 필수적으로 수행되어야 할 요소이다. 어떠한 방법을 택하여 보다 효율적으로 수행할 것 인지가 엔지니어의 관심일 것이다. 구조최적화는 설계변수에 따라 치수최적화, 물성치최적화 형상최적화 등으로 나눌 수 있다. 형상 최적화는 구조물의 유한요소모델을 기본으로 경계의 형상이나 절점의 형상, 회전 등을 설계 변수로 삼는 것이다. 고유진동수를 높이거나 모드형상을 제어하기 위하여 평판에 보강재를 붙이는 경우가 있다. 이때 보강재의 위치나 치수 형상 등이 중요한 변수가 될 수 있다. 본 논문에서는 평판의 고유진동수를 극대화 하기위해 보 보강재를 붙이는 문제에서 보의 회전을 설계 변수로 삼아 최적설계를 수행 할 것이다.

  • PDF

Seismic Response of Soil-Reinforced Segmental Retaining Walls by Finite Element Analysis (유한요소해석에 의한 블록식 보강토 옹벽의 지진시 응답특성)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.15-25
    • /
    • 2001
  • 본 고에서는 블록식 보강토 옹벽의 지진시 거동에 관한 유한요소해석 결과를 다루었다. 보강토 옹벽의 지진시 변위거동을 검토한 결과 벽체저부를 지점으로 하는 캔틸레버형태의 변위 거동을 보였으며 따라서 옹벽 상단부에서의 보강재 인장력 증가가 현저하게 나타나 벽체전반에 걸친 분포양상은 균등한 경향을 보였다. 한편, 지진하중으로 인한 증분유발인장력에 관하여 검토한 결과 기존의 보강토 옹벽 내진설계기준과 비교하여 정성.정량적인 측면에서 상당한 차이를 보였으며 내진설계기준이 전반적으로 과소평가 하는 것으로 나타났다. 아울러서, 내진설계측면에서 변위억제 방안에 관한 매개변수 연구결과 임의 조건에 있어서 최대의 보강효과를 나타내는 보강재 임계 강성과 포설길이가 존재하며 최적의 보강효과를 얻기 위해서는 이에 대한 종합적인 검토가 요구되는 것으로 나타났다. 본 고에서는 연구결과를 종합적으로 고찰하여 실무 적용관점에서의 주안점을 언급하였다.

  • PDF

An Experimental Study on the Fire Resistance behaviour of Asymmetric Slimfloor Beam According to Cross Section Shape Variation (비대칭 H형강 합성보의 단면형상변화에 따른 온도특성 및 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Lee, Jae-Sung;Kwon, Ki-Hyuck;Yeo, In-Hwan
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.23-30
    • /
    • 2012
  • The temperature development of a structural element is dependent on section factor, which is estimated as a ratio of the fire-exposed perimeter to the cross-section area. Hence, with the higher section factor, the faster temperature development of the section os observed. Composite beam member, partially embedded asymmetry H beam, has a good fire resistance to the cross-section. The study was intended to conduct with change with section factor. The experimental result of section type which the Slim Beam Floor is bottom flange reinforced method.

Buckling Analysis of Laminated Composite Plates Longitudinally Stiffened with U-Shaped Ribs (축방향 압축을 받는 폐단면리브로 보강된 복합적층판의 좌굴 해석연구)

  • Choi, Byung-Ho;Choi, Su-Young;Park, Sang-Kyun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • Even though the longitudinally stiffened laminated composite plates with closed section ribs should be an effective system for axially compressed members, the existing researches on the applications of closed-section ribs, especially for the laminated composite plates, are not sufficient. This study is aimed to examine the influence of the sectional stiffness of U-shaped ribs on the buckling modes and strengths of laminated composite plates. Applying the orthotropic plates with eight layers of the layup $[(0^{\circ})_4]_s$ and $[(0^{\circ}/90^{\circ})_2]_s$, 3-dimensional finite element models for the U-rib stiffened plates were setup by using ABAQUS and then a series of eigenvalue analyses were conducted. From the parametric studies, the minimum required ply thicknesses as well as the buckling strengths were presented for the analysis models. The buckling strengths were compared with the theoretical critical stress equation for simply supported plates based on the Classical laminated plate theory. This study will contribute to the future study for evaluating the minimum required stiffness and optimum design of U-rib stiffened plates.

Life-Cycle Cost Effective Optimal Seismic Retrofit and Maintenance Strategy of Bridge Structures - (II) Methodology for Life-Cycle Cost Analysis (교량의 생애주기비용 효율적인 최적 내진보강과 유지관리전략 - (II) 생애주기비용해석 방법론)

  • Lee, Kwang-Min;Cho, Hyo-Nam;Chung, Jee-Seung;An, Hyoung-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.977-988
    • /
    • 2006
  • The goal of this study is to develop a realistic methodology for determination of the Life-Cycle Cost (LCC)-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges. The proposed methodology is based on the concept of minimum LCC which is expressed as the sum of present value of seismic retrofit costs, expected maintenance costs, and expected economic losses with the constraints such as design requirements and acceptable risk of death. The proposed methodology is applied to the LCC-effective optimal seismic retrofit and maintenance strategy of a steel bridge considered as a example bridge in the accompanying study, and various conditions such as corrosion environments and Average Daily Traffic Volumes (ADTVs) are considered to investigate the effects on total expected LCC. In addition, to verify the validity of the developed methodology, the results are compared with the existing methodology. From the numerical investigation, it may be positively expected that the proposed methodology can be effectively utilized as a practical tool for the decision-making of LCC-effective optimal seismic retrofit and maintenance strategy of deteriorating bridges.

Optimization of the Path of Inner Reinforcement for an Automobile Hood Using Design Sensitivity Analysis (설계민감도해석을 이용한 자동차후드 보강경로 최적설계)

  • Lee, Tae-Hui;Lee, Dong-Gi;Gu, Ja-Gyeom;Han, Seok-Yeong;Im, Jang-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.62-68
    • /
    • 2000
  • Optimization technique to find a path of an inner reinforcement of an automobile hood is proposed by using design sensitivity informations. The strength and modal characteristics of the automobile hood are analyzed and their design sensitivity analyses with respect to the thickness are carried out using MSC/NASTRAN. Based on the design sensitivity analysis, determination of design variables and response functions is discussed. Techniques improving design from design sensitivity informations are suggested and the double-layer method is newly proposed to optimize the path of stiffener for a shell structure, Using the suggested method, we redesign a new inner reinforcement of an automobile hood and compare the responses with the original design. It is confirmed that new design improved in the frequency responses without the weight increasement.

Structural Assessment of the Optimal Section Shape of FRP Based Stiffeners (FRP 보강재의 최적 단면 형상 결정 및 평가에 관한 연구)

  • Jeong, Han-Koo;Nho, In-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.435-444
    • /
    • 2011
  • This paper deals with the structural assessment of metallic and non-metallic stiffened/monocoque plated marine structures under a lateral pressure load to identify appropriate combination of material and section configuration, especially at the preliminary marine structural design stage. A generic rectangular plated structure is exemplified from the metallic superstructure of a marine vessel and its structural topology is varied for the structural assessment. In total 13 different structural topologies are proposed and assessed using appropriate elastic solutions in conjunction with a set of stress and deflection limits obtained from practice. The geometry dimensions and weights of the structural topologies are calculated, and subsequently, the costs of the materials used in the structural topologies are reviewed to discuss the cost-effectiveness of the materials. Finally, conclusions are made with the aim of suggesting suitable structural topology for the marine structural member considered in this paper.

Evaluation of Mechanical Properties and Crack Resistant Performance in Concrete with Steel Fiber Reinforcement and CSA Expansive Admixture (CSA 팽창재를 혼입한 강섬유 보강 콘크리트의 역학적 성능 및 균열 저항성능 평가)

  • Choi, Se-Jin;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2014
  • In order to prevent brittle failure of concrete, steel fiber reinforcement is effective composite material. However ductility of steel fiber reinforced concrete may be limited due to shrinkage caused by large content of cement binder. Chemical prestressing for steel fiber reinforcement in cement matrix can be induced through expansive admixture and this can increase reinforcing effect of steel fiber. In this study, mechanical performances in concrete with CSA (Calcium sulfoaluminate) expansive admixture and steel fiber reinforcement are evaluated. For this work, steel fiber reinforcement of 1 and 2% of volume ratio and CSA expansive admixture of 10% weight ratio of cement are added in concrete. Mechanical and fracture properties are evaluated in concrete with steel fiber reinforcement and CSA expansive admixture. CSA concrete with steel fiber reinforcement shows increase in tensile strength, initial cracking load, and ductility performance like enlarged fracture energy after cracking. With appropriate using expansive admixture and optimum ratio of steel fiber reinforcement, their interactive action can effectively improve brittle behavior in concrete.

Optimal Design of Panel with Trapezoidal Type Stiffeners (사다리꼴 보강재를 활용한 패널의 최적설계)

  • 이종선
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.71-76
    • /
    • 2003
  • Optimal design of panel with trapezoidal type stiffeners was studied using linear and nonlinear deformation theories. Also analysis method was using closed-form analysis and finite difference energy methods, respectively. Various bucking load factors are obatined for stiffened laminated composite panel with trapezoidal type stiffeners and various aspect ratios, which are made from Carbon/Epoxy USN 125 prepreg and are simply-supported on four edges under uniaxial compression. Optimal design analyses are carried out by the nonlinear search optimizer, ADS.

Topology Optimization Using Equivalent Material Properties Prediction Techniques of Particulate-Reinforced Composites (입자보강 복합재료의 등가 재료상수 예측기법을 이용한 위상 최적설계)

  • 임오강;이진식
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.267-274
    • /
    • 1998
  • 본 연구에서는 기지개와 미시구멍으로 구성된 복합재료에 입자보강 복합재료의 등가 재료상수 예측기법인 평균장 근사이론과 등가원리를 적용하여 위상 최적화에 필요한 등가 재료상수와 설계변수와의 상관관계식을 유도하였다. 또한, 유도된 관계식에 중간값을 갖는 설계변수의 수를 줄이기 위하여 벌칙인자를 도입하였다. 그리고 본 연구의 타당성을 검증하기 위하여 벌칙인자가 도입된 위상 최적화문제를 순차이차계획법인 PLBA 알고리즘을 이용하여 해석하였다.

  • PDF