• Title/Summary/Keyword: 최적 보강

Search Result 364, Processing Time 0.025 seconds

Numerical Analysis for Optimal Reinforcement Length Ratio According to Width-to-Height Ratio of Back-to-Back MSE (Back-to-Back 보강토옹벽의 옹벽폭비에 따른 최적 보강길이비 산정을 위한 수치해석적 연구)

  • Park, Choon-Sik;Kim, Dong-Kwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.69-76
    • /
    • 2020
  • Since the mechanically stabilized earth walls have a form of retaining wall compatible with a narrow section, the geogrid overlaps according to the separation distance between the walls. There is a problem that the overall behavior may occur in the state of being integrated with the stress change due to the interaction of the geogrid. Therefore, a careful approach is required at the design stage, but there are currently no design criteria or guidelines in Korea. This study investigated the optimal reinforcement length ratio according to the retaining wall width to height ratio (width to height ratio, Wb/H) for these back-to-back mechanically stabilized earth walls. Retaining wall width ratio is 1.1H, 1.4H, 1.7H, 2.0H for Case II of the FHWA design standard, and the height is 3.0 m, 5.0 m, 7.0 m, and 10.0 m, which are most commonly applied. Through numerical analysis, the appropriateness of the FHWA design standard and the optimal reinforcement length ratio according to the height of the retaining wall and the width of the retaining wall were proposed.

Optimized Mix Proportioning of Steel and Hybrid Reinforced Concrete Using Harmony Search Algorithm (화음탐색법을 이용한 강섬유 및 하이브리드 섬유보강 콘크리트의 최적배합 설계)

  • Lee, Chi-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.151-159
    • /
    • 2006
  • The guide line of the SFRC mix design was not established, and the convenience of the practical application on the spot is not so good. In this paper, hence, the program which is optimized to result the mix proportion by the flexural strength and toughness, was developed to apply to SFRC on the practical spot. This program could minimize the number of trial mixes and get an economical and appropriate mixture. In addition, the theoretical background on which the program is based, will be the basis of the embodied method to mixing SFRC. Additionally, new algorithm, in this paper, was used to develop the mix proportioning program of SFRC. The new algorithm is the Harmony Search which is the heuristic method mimicking the improvisation of music players, Musical performances seek a best state determined by aesthetic estimation, as the optimization algorithms seek a best state determined by objected function value. And, it was developed the program about single fiber reinforced concrete, beside to the hybrid fiber reinforced concrete that two kinds of steel fibers, which have the different geometry, was reinforced. This will be able to keep the world trend to study, hence, offers the basis of the next research about hybrid fiber reinforced concrete.

An Experimental Study on the Silica Fume and Steel Fiber Reinforced Shotcrete (실리카흄 및 강섬유보강 숏크리트의 실험적 연구)

  • 오병환;박칠림;백신원;장성욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.119-124
    • /
    • 1992
  • 최근들어 고속도로, 고속철도,지하철 등의 건설이 급격히 증가함에 따라 터널의 건설이 늘어나고 있다. 이러한 터널등의 건설에서 필수적으로 따르는 것이 숏크리트의 시공이며 이러한 숏크리트의 시공은 앞으로 더욱 증가할 추세에 있다. 그러나 숏크리트의 광범위한 시공에도 불구하고 현재 여러 가지 문제점을 내포하고 있는 것이 사실이다. 따라서 본 연구에서는 우리나라 현행 숏크리트의 현황과 문제점을 도출하여 성능개선을 위한 최적 배합을 도출하고 고품질의 숏크리트 시공을 위하여 실리카퓸 숏크리트의 개발 및 적용과 인성(Toughness)과 연성(Ductility)을 대폭 증가시키고 시공속도를 빠르게 하여 안전성과 함께 경제성을 확보할 수 있는 강섬유보강 숏크리트의 개발 및 적용에 대한 연구를 집중적을 수행하였다. 본 연구로부터 숏크리트의 최적 배합을 도출하였고 강도와 내구성을 함께 증가시키고 리바운드율을 대폭 감소시킬 수 있는 실리카퓸 숏크리트를 개발하였다. 또한 wiremesh를 대체할 수 있는 강섬유보강 숏크리트를 개발하여 실내시험 및 현장 적용성 시험을 수행하였다.

  • PDF

Optimal Design of Laminated Composite Beams with Open Cross Section (복합 적층 개단면 보의 최적설계)

  • 배하록;홍순호;신영석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • 복합재 적층판은 중량에 비해 높은 강성과 강도가 요구되는 공학의 다양한 분야에서 매우 유용하다. 보강섬유 복합재의 공학적 활용이 활발해지고, 중량의 감소화가 설계의 중요한 목적이 됨으로써, 근래 복합재 구조물들의 최적화 설계의 중요성이 대두되고 있다. 그러나 복합재 적층 구조물 재료의 비등방성에 의해 해석과 설계가 매우 어렵다. 본 연구에서는 수치적 최적화 방법과 유한요소법을 이용하여 보강섬유 복합재의 최적설계를 하였다. 복합재 적층판으로 이루어진 개단면 보에 있어서 보강섬유의 다양한 적층방향에 대한 거동의 영향을 규명하였다.

  • PDF

Optimal Design of Stiffened Laminated Composite Cylindrical Panel with Various Types of Stiffeners (다양한 형태의 보강재로 보강된 원통형패널의 최적설계)

  • Lee Jong-Sun;Won Chong-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.10-15
    • /
    • 2006
  • The optimal design for stiffened laminated composite cylindrical panels under axial compression was studied using linear and nonlinear deformation theories by finite difference energy methods. Various panel structures was made from Carbon/Epoxy USN125 prepreg and considered 3 types stiffeners. Optimal design analyses of panel structure are carried out by the nonlinear search optimizer, ADS. This optimal design results are compared to the FEM result using ANSYS.

Improvement of Flexural Structural Performance and Applied Section Shape for Sound Proof Wall Structures Using Glass Fiber Reinforced Polymer(GFRP) (GFRP를 활용한 도로 방음벽 구조물의 구조성능 및 단면형상 개선에 관한 연구)

  • Jung, Woo-Young;Choi, Hyun-Kyu
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • This research presents the structural performance and an improving technique for flexural capacity of road safety facilities based on the damage cases by wind pressure. Among road safety facilities, a support frame of soundproofing walls is considered as a prototype structure and its corresponding structural behaviors and section design are performed mainly by analytical and experimental studies. On the basis of analytical results, glass fiber reinforced polymer(GFRP) with an epoxy matrix which is high stiffness-to-weight ratio was used for applied one of strengthening techniques and their results shows that support frame strengthened by GFRP is the most effective compared to other cases proposed in this research for advancing its flexural improvement, Finally, optimum section design was performed analytically to evaluate wind-resistance capacity and its result would be very useful for developing a practical design guideline for Road safety facilities under strong wind.

  • PDF

Optimum Mix Design for Waste Newsprint Paper Fiber Reinforced Cement Composites (폐지섬유보강 시멘트 복합체의 최적배합비 도출)

  • 원종필;배동인;박찬기;박종영
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.346-353
    • /
    • 2001
  • This research investigates the mixture proportioning of waste newsprint paper fiber for thin-cement product. Waste newsprint paper fibers obtained through shredded mechanically by a dry process. Waste newsprint paper fiber reinforced cement composites was manufacted by slurry-dewatering method. The waste newsprint paper fiber reinforcement conditions (fiber mass fraction, level of substitution of virgin fibers, level of fiber beating) and processing variables (pressed, unpressed) are optimized through experimental studies and statistical analyses based on factorial design of experiments and analyses of variance. The optimized recycled waste newsprint paper fiber reinforced cement composites were technically evaluated. The results are shown to possess acceptable properties and strong potentials of the recycling of waste newsprint paper of the reinforcement of thin-cement products.

Optimal Design of the PSC Beam Reinforcement for Minimum Life-Cycle Cost (최소생애주기비용을 위한 PSC보 보강의 최적설계)

  • Bang, Myung-Seok;Han, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.125-130
    • /
    • 2008
  • To optimize the selected reinforcing method for application to PSC Beam bridges, the reliability analysis was performed with consideration for the increase and decrease of the member section based on the standard design section, and the minimum life-cycle cost(LCC) was calculated from this analysis with consideration for the aleatory uncertainty. Moreover, the mean, 50%, 75%, and 90% distributions of the analysis results were re-evaluated quantitatively by considering the effect of the epistemic uncertainty. The reliability results gained from the application of the reinforcing method, as well as the optimal design method based on the minimum LCC, will provide more reasonable design criteria for the PSC Beam bridges.

A Study on Mechanical Characteristics of Fiber Modified Emulsified Asphalt Mixture as Environmentally-Friend Paving Material (섬유보강 친환경 상온아스팔트 혼합물의 역학적 특성에 관한 연구)

  • Rhee Suk-Keun;Park Kyung-Won
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.23-30
    • /
    • 2006
  • Emulsified Asphalt Mixture(EAM) is more environmentally-friendly and cost-effective than typical Hot Mix Asphalt (HMA) because EAM does not produce carcinogenic substances, e.g., naphtha, kerosene, during the both of manufacturing and roadway construction process. Also, it does not require heating the aggregates and asphalt binder. However, EAM has some disadvantages. Generally EAM has a less load bearing capacity and more moisture susceptibility than conventional HMA. The study evaluated a Fiber modified EAM (FEAM) to increase load bearing capacity and to decrease moisture susceptibility of EAM. Modified Marshall mix design was developed to find Optimum Emulsion Contents (OEC), Optimum Water Contents (OWC), and Optimum Fiber Contents (OFC). A series of test were performed on the fabricated specimen with OBC, OWC, and OFC. Tests include Marshall Stability, Indirect Tensile Strength, and Resilient modulus test. Comparison analyses were performed among EAM, Fiber modified EAM (FEAM), and typical HMA to verify the applicability of EAM and FEAM in the field. Test results indicated that both of EAM and FEAM have an enough capability to resist medium traffic volume based on the Marshall mix design criteria. Also the study found that fiber modification is effective to increase the load bearing capacity and moisture damage resistance of EAM.

  • PDF