• Title/Summary/Keyword: 최적 배합비

Search Result 343, Processing Time 0.034 seconds

Optimization of mixing ratio in preparation of gluten-free rice udon through response surface methodology (반응 표면 분석법을 이용한 글루텐 프리 쌀 우동 제조 최적화)

  • Park, Se-Jin;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.739-748
    • /
    • 2021
  • This study focuses on the use of rice in the production of gluten-free rice udon (GFU) through an optimized mixing ratio, using the Box-Behnken response surface methodology (RSM). Different additional levels of rice flour (A, 40-60 g), acetylated distarch adipate (B, 10-20 g), and trehalose (C, 0-3 g) were used as variables, while water absorption level, volume, cooking loss, solid yield, lightness, texture properties, proximate compositions of GFU and turbidity of cooking water were set as responses in the RSM design model. The optimum mixing ratio for the preparation of gluten-free rice udon was obtained for 60.00 g of rice flour, 18.81 g of acetylated distarch adipate without the addition of trehalose. The response values of the optimized samples were water absorption (60.94%), volume (34.94%), turbidity of the cooking water (0.37), cooking loss (4.77%), solid yield (1.55 g), lightness value (70.04), hardness (2.53 N), springiness (0.18), gumminess (10.45 N), chewiness (1.83 N), and cohesiveness (2.89). This study has shown that rice flour can replace wheat flour to manufacture udon at an optimized mixing ratio successfully derived by statistical estimation method.

500kg/cm$^2$고강도 콘크리트 - 재료특성$\cdot$현장시공성에 관한 연구

  • 안재현;권영호
    • 어항어장
    • /
    • s.18
    • /
    • pp.69-77
    • /
    • 1992
  • 고강도 콘크리트의 실용화 일환으로 설계기준강도 500kg/cm$^2$ 이상인 고강도 콘크리트의 현장 B/P 생산과 실대구조물의 시공성 및 강도, 온도 특성에 관한 연구를 수행하였다. 이러한 연구를 위해 현장 최적배합비 선정과 레미콘 운반시간에 따른 경시변화 시험을 수행하였고 실대구조물의 코아강도 및 콘크리트 내부온도를 측정하였다. 일반 현장재료와 장비의 사용으로도 고강도 콘크리트의 생산과 시공성을 확보할 수 있었으며 실대구조물의 코아강도가 500kg/cm$^2$ 이상을 나타냄으로써 고강도 콘크리트의 실용화에 대한 가능성을 확인할 수 있었다.

  • PDF

Compaction Characteristics of Reactive Material for Absorption of Underground Oil Contaminant (지중 유류 오염물 흡수를 위한 반응재료의 다짐 특성)

  • Hong, Gigwon;Lee, Jai-Young;Oh, Seung-Jin;Kim Su-Hee;Park, Jeong-Jun
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.337-338
    • /
    • 2023
  • 본 논문에서는 유류 오염물의 흡수 반응이 가능한 반응재료에 대하여 지중 구조 재료로서의 적용성 검토를 목적으로 배합조건에 따른 다짐시험을 실시하였다. 다짐시험 결과, 주요 반응물질이 최적함수비에 미치는 영향은 미미하였으나, 최대건조단위중량의 영향인자로 평가되었다.

  • PDF

Evaluation of Optimum Mix Proportion and Strength of Volcanic Ash based Geopolymer (화산재 기반 지오폴리머의 최적배합 도출 및 강도 특성)

  • Nam, Chang-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.720-727
    • /
    • 2017
  • This study determined the optimum mix proportions for volcanic-ash-based geopolymer by analyzing the flow, setting time, and compressive strength. $Na2SiO_3$ and NaOH were used as alkali activators, and NaOH concentrations of 2, 4, 6, and 8M were used for different experimental cases. The A/B ratios examined were 0.25, 0.3, 0.35, 0.4, and 0.45, and the ratios of volcanic ash to blast furnace slag binder were 7:3, 6:4, and 5:5. In the experiment, the flow and setting time tended to decrease and the compressive strength increased as the molarity of NaOH in the geopolymer increased. The optimum molarity of NaOH was determined to be 4M. As the A/B ratio increased, the setting time decreased and the compressive strength increased. The most advantageous A/B ratio for the setting time and strength was 0.35. Increasing the ratio of volcanic ash resulted in a longer setting time and lower compressive strength. The optimum binder ratio was chosen as 6:4 based on the setting time and compressive strength. Thus, 4M of NaOH, an A/B ratio of 0.35, and binder ratio of 6:4 are considered as the proper parameters for the volcanic-ash-based geopolymer.

Suggesting Optimum Mix Proportion of Hardener for Soil-pavement Concrete Incorporating Natural Organic Lime and Magnesia-lime (천연유기석회 및 고토석회를 조합한 흙 포장 콘크리트용 경화재의 최적배합안 도출)

  • Han, Min-Cheol;Han, Jun-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.113-121
    • /
    • 2020
  • Lots of soil-pavement concrete placed showed a number of problems such as decreasing strength, and durability. In this research, to provide a solution of the problem reported the wasting materials of natural organic lime and magnesia lime were used as a hardener to achieve sufficient performance of soil-pavement concrete. Namely, as a stimulus of blast furnace slag, the natural organic lime and magnesia lime were tested within the mix proportion of 0 to 10 % for each lime to make a new hardener. As a result, in the case of mortar with 1 to 3 % of cement to fine aggregate, 30 % replaced blast furnace slag showed the more favorable results with 5 to 5 % of mix proportion for natural organic lime and magnesia lime.

A Study on the Durability Improvement of Highway-Subsidiary Concrete Structure Exposed to Deicing Salt and Freeze-Thaw (동결융해 및 제설제에 노출된 고속도로 소구조물 콘크리트의 내구성 개선 연구)

  • Lee, Byung-Duk;Choi, Yoon-Suk;Kim, Young-Geun;Choi, Jae-Seok;Kim, Il-Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.128-135
    • /
    • 2016
  • In the current concrete structure of the highway is still the major problem most of concrete deterioration caused by the freeze-thaw and deicing salt, which is of issues that are not completely resolved. In particular, a single freezing event does not cause much harm, durability of concrete under multi-deterioration environment by repeated freeze-thaw and deicing salt is rapidly degraded and reduce its service life. In this study, the exposure environmental condition according the regional highway points were established. The damage condition and chloride content of the concrete at general and severe environmental exposure condition were also investigated. In addition, the experimental test of chloride ion permeability, scaling resistant and freeze-thaw resistance were carried out to improve the durability of the mechanical placing concrete of subsidiary structure. According to the results of this study, in observation of concrete surface condition, the concrete exposed by severe environmental condition showed broad ranges of damage with high chloride contents. Meanwhile, the water-binder(W/B) ratio and the less water content, and fly ash concrete than the specified existing mix proportion is significantly improved the durability. Also, the optimal mix proportion derived for test is satisfied the strength and air contents, water-binder ratio, and durability criteria of concrete specifications, as well as service life seems greatly improved.

Study on the Physical Properties of the Artificial Lightweight Aggregate Recycled from the Dyestuff Sludge Treated Chemically With Ti and Fe Salt (Ti염 및 Fe염으로 화학처리된 염색공단 슬러지를 재활용한 인공경량골재의 물리적 특성에 관한 연구)

  • Choi, Jong-Oh;Jung, Yong-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.34-42
    • /
    • 2015
  • The paper investigates environmental hazards and characteristics of the artificial lightweight aggregate manufactured by using dyestuff sludge from dyeing industrial complex. The dyestuff sludge used in this study is chemically treated with Ti and Fe salt for the purpose of recycling. The artificial lightweight aggregate is manufactured through 3 step; 1) Selecting the optimum moisture content by evaluating plasticity from the mixing ratio of the clay and sludge, 2) shaping round type based on the optimum mixing ratio, 3) drying and Sintering process. Based on KS F 2534 "Lightweight Aggregate for Structural concrete", the particle size, fineness modulus, the density, absorption, unit volume weight, stability and environmental hazards of the manufactured lightweight aggregate are evaluated. Experimental results show that the particle size and fineness modulus is out of the range. However, it is observed that other physical properties are within criteria. In addition, it is confirmed that the problem of the particle size and fineness modulus could be solved in the manufacturing process.

Synergistic Effect in Mechanical Properties of Sheet Molding Compound via Simultaneous Incorporation of Glass Fiber and Glass Bubble Fillers (유리섬유와 유리버블에 의한 Sheet Molding Compound 강도의 시너지 효과)

  • Noh, Ye Ji;Lee, Yong Cheol;Hwang, Taewon
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.8-11
    • /
    • 2018
  • Sheet molding compound (SMC) is one of the most economical fiber reinforced composite fabrication processing for automotive applications. In this study, we studied the optimum formulation for the production of SMC which shows low specific gravity without lowering the mechanical properties by using glass bubble (GB) which is a low specific gravity filler and glass fiber (GF) as a reinforcing material. The tensile strength increased with the increase of the GF in the SMC, and the specific gravity decreased with the increase of the GB. The synergistic effect of improving the mechanical properties as the specific gravity is lowered is found in the optimum formulation. The synergy effect was confirmed by the internal structure analysis that the dispersion effect of the crack propagation of the GB and the improvement of the binding force between the fiber and the matrix due to the incorporation of the GB.

Seismic Fragility Analysis of a LNG Tank with Friction Pendulum System of Various Friction Coefficient (마찰재 물성변화에 따른 마찰진자시스템을 적용한 LNG 탱크의 지진취약도 분석)

  • Moon, Ji-Hoon;Kim, Ji-Su;Lee, Tae-Hyung;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.95-102
    • /
    • 2017
  • The friction pendulum system(FPS) is a kind of seismic isolation devices for isolating structures from an earthquake. To analyze the effect of friction materials used in the friction pendulum system, fragility analysis of LNG tank with seismic isolation system was conducted. In this study, titanium dioxide($TiO_2$) nanoparticles were incorporated into polyvinylidene fluoride(PVDF) matrix to produce friction materials attached to the FPS. The base moment of the concrete outer tank and the acceleration of the structure were evaluated from different mixing ratios of constituents for the friction materials. The seismic fragility curves were developed based on two types of limit state. It is confirmed that evaluation of combined fragility curves with several limit states can be applied to select the optimum friction material satisfying the required performance of the FPS for various infrastructure.

[Retraction] Characteristics and Optimization of Platycodon grandiflorum Root Concentrate Stick Products with Fermented Platycodon grandiflorum Root Extracts by Lactic Acid Bacteria ([논문 철회] 반응표면분석법을 이용한 젖산발효 도라지 추출물이 첨가된 도라지 농축액 제품의 최적화 연구)

  • Lee, Ka Soon;Seong, Bong Jae;Kim, Sun Ick;Jee, Moo Geun;Park, Shin Young;Mun, Jung Sik;Kil, Mi Ja;Doh, Eun Soo;Kim, Hyun Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1386-1396
    • /
    • 2017
  • The purpose of this study was to determine the optimum Platycodon grandiflorum root concentrate (PGRC, $65^{\circ}Brix$), fermented P. grandiflorum root extract by Lactobacillus plantarum (FPGRE, $2^{\circ}Brix$), and cactus Chounnyouncho extract (Cactus-E, $2^{\circ}Brix$) for preparation of PGRC stick product with FPGRE using response surface methodology (RSM). The experimental conditions were designed according to a central composite design with 20 experimental points, including three replicates for three independent variables such as amount of PGRC (8~12 g), FPGRE (0~20 g), and Cactus-E (0~20 g). The experimental data for the sensory evaluation and functional properties based on antioxidant activity and antimicrobial activity were fitted with the quadratic model, and accuracy of equations was analyzed by ANOVA. For the responses, sensory and functional properties showed significant correlation with contents of three independent variables. The results indicate that addition of PGRC contributed to increased bitterness and acridity based on the sensory test and antimicrobial activity, addition of FPGRE contributed to increased antioxidant activity and antimicrobial activity, and addition of Cactus-E contributed to increased fluidity based on the sensory test, antioxidant activity, and antimicrobial activity. Based on the results of RSM, the optimum formulation of PGRC stick product was calculated as PGRC 8.456 g, FPGRE 20.00 g, and Cactus-Ex 20.00 g with minimal bitterness and acridity, as well as optimized fluidity, antioxidant activity, and antimicrobial activity.