• 제목/요약/키워드: 최적 매칭 노드

검색결과 7건 처리시간 0.02초

트리패턴매칭기법의 재목적 가능한 중간코드 최적화 시스템 (Retargetable Intermediate Code Optimization System Using Tree Pattern Matching Techniques)

  • 김정숙;오세만
    • 한국정보처리학회논문지
    • /
    • 제6권8호
    • /
    • pp.2253-2261
    • /
    • 1999
  • ACK에서는 패턴 테이블 생성기와 핍홀 최적화기에서 스트링 패턴 매칭 기법을 이용하여 EM 중간 코드에 대한 최적화 코드를 생성한다. 하지만 이 스트링 패턴 매칭 방법은 패턴 결정 시에 반복적으로 많은 비교 동작이 이루어지므로 비효율적이다. 본 논문은 ACK의 중간 코드 최적화기를 개선하기 위해 EM 트리 생성기, 최적화 패턴 테이블 생성기, 트리 패턴 매칭기로 구성된 트리 패턴 매칭 알고리즘을 이용한 EM 중간 코드 최적화 시스템을 설계하고 구현하였다. 이러한 트리 패턴 매칭 알고리즘은 EM 트리를 하향식으로 순회하면서 트리 구조를 가진 패턴 테이블을 참조하여 루트 노드를 중심으로 패턴 매칭을 수행한다. 트리 패턴 매칭 동작은 궁극적으로 ACK의 스트링 패턴 매칭에 비해 최적화 패턴을 찾는데 걸리는 시간을 평균 10.8% 감소시킬 수 있는 효과를 보였다.

  • PDF

자동분류와 사용자업데이트를 이용한 스키마 매칭 (Automatic Scheme Matching using Classification and User update)

  • 이명주;신현두;박소라;황수찬
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.102-104
    • /
    • 2011
  • 서로 다른 XML 스키마를 바탕으로 작성된 XML 문서간의 비교 및 검색을 위해서는 두 스키마 사이의 연관관계를 계산하는 스키마 매칭 과정이 필수적이다. 스키마 매칭방법으로는 구조적 연관성을 비교하는 방법, 의미적 연관성을 계산하는 방법, 타입의 연관성을 계산하는 방법이 존재한다. 또한, 자동분류기법을 사용하여 연관성을 계산하는 방법도 존재한다. 본 논문에서는 XML 문서의 비교을 위한 효율적인 스키마 매칭 방법을 제안한다. 제안된 방법은 두 단계로 구성된다. 먼저 자동분류기법을 사용하여 단말노드 사이의 매칭정도를 계산한다. 또한 의미적, 구조적, 타입의 연관성도 계산하여 최적의 매칭결과를 선택한다. 특히 의미적 연관성은 사용자 피드백에 의해 점증적으로 갱신되는 온톨로지에 기반한다.

최적 경로 탐색을 위한 eSPN 알고리즘에 관한 연구 (A Study on eSPN Algorithm for Searching the Shortest Path)

  • 고영훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.585-586
    • /
    • 2009
  • 홉필드 네트웍은 패턴 매칭과 더불어 최적화 문제를 푸는 도구로 사용될 수 있다. Ali에 의해 제안된 최적 경로 탐색 알고리즘을 개선하여 계산량을 대폭 줄이고 효과적으로 최적 경로를 탐색할 수 있다. 노드의 제곱인 브랜치수의 뉴런이 필요한 Ali 알고리즘은 탐색 네트워크가 커지면 많은 시간이 소요되는 단점이 있다. 본 논문은 계산량은 줄이면서 효과적으로 최적 경로를 탐색하는 방법을 제안한다.

홉필드 네트웍에서 에너지 함수를 이용한 최적 경로 탐색에 관한 연구 (Study on the Shortest Path by the energy function in Hopfield neworks)

  • 고영훈;김윤상
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.215-221
    • /
    • 2010
  • 홉필드 네트웍은 패턴 매칭과 더불어 최적화 문제를 푸는 도구로 사용될 수 있다. 특히 Zhang과 Ali는 홉필드 네트웍의 노드를 2차원으로 확장하여 최적화 문제를 해결하였다. 잠재적 브랜치의 총합인 노드의 제곱만큼 뉴런이 필요한 Ali 알고리즘은 탐색 네트워크가 커지면 많은 시간이 소요되는 단점이 있다. 본 논문에서는 Ali의 방식을 개선하여 계산량을 대폭 줄이고 효과적으로 최적 경로를 탐색할 수 있는 방식을 제안한다. 효과적인 최적 경로 탐색을 위하여 2단계로 구분하여 진행된다. 1단계에는 홉필드 네트웍을 2단계에는 eSPN 알고리즘을 사용하여 최적 경로를 탐색할 수 있다. 제안된 방식은 샘플 네트웍을 통하여 최적 경로 탐색이 확인되었으며, Ali 알고리즘보다 빠르고 간단하여 실제 최적화에 적용하기기 용이하다. 특히, 네트웍의 브랜치 비용이 변화할 경우에도 홉필드 네트웍의 연결 시냅스가 아닌 입력 바이어스를 조정하므로 동적으로 변화하는 네트웍의 최적 경로 탐색에도 유용하다.

적합도 함수를 이용한 최적의 추천자 그룹 생성 및 유지 알고리즘 (Globally Optimal Recommender Group Formation and Maintenance Algorithm using the Fitness Function)

  • 김용구;이민호;박수홍;황철주
    • 한국정보과학회논문지:정보통신
    • /
    • 제36권1호
    • /
    • pp.50-56
    • /
    • 2009
  • 본 논문에서는 P2P 네트워크 환경에서 유사한 특성을 가진 다른 노드(node)를 찾아 추천자(recommender) 그룹을 형성하고 유지하는 새로운 알고리즘을 제안한다. 두 노드의 유사한 특성을 비교하기 위해 본 논문에서는 두 노드의 특성값(characteristic value. 이하 CV)을 이용한 적합도 검사(fitness evaluation)를 사용하여 유사도(similarity)를 확인한다. 유사도의 크기가 작을수록 두 노드는 매우 유사한 특성을 가지게 된다. 또한, 본 논문에서 제안하는 GORGFM(Globally Optimal Recommender Group Formation and Maintenance) 알고리즘은 최단 기간 내에 최적의 추천자 그룹을 형성하고 사용자의 선호도 변화에 대응할 수 있는 알고리즘이다. GORGFM 알고리즘을 평가하기 위해 본 논문에서는 매칭율(matching rate)과 얼마나 빠르고 정확하게 추천자 그룹을 형성하는가에 대해 시뮬레이션 한다. GORGFM 알고리즘은 네트워크에서뿐만 아니라 인터넷상에서 컨텐츠(contents) 검색 등과 같이 적합도 함수(fitness function)를 이용할 수 있는 모든 시스템에 적용할 수 있다.

자기 조직화 맵 기반 유사 검색 시스템 (SOM-Based $R^{*}-Tree$ for Similarity Retrieval)

  • 오창윤;임동주;오군석;배상현
    • 정보처리학회논문지D
    • /
    • 제8D권5호
    • /
    • pp.507-512
    • /
    • 2001
  • 특징 기반 유사성은 멀티미디어 데이터베이스 시스템에서 중요한 연구 쟁점이 되고 있다. 멀티미디어 데이터의 특징이 멀티미디어 객체들을 구별하는데 유용하다지만 특징 벡터의 차원의 수가 증가함에 따라 종래의 다차원 데이터 구조의 성능은 떨어지는 경향이 있다. $R^{*}-Tree$는 R-Tree의 가장 성공적인 병형으로 본 논문에서 고차원 특징 벡터를 위한 새로운 인덱싱 방법으로서 자기 조직화 맵 기반 $R^{*}-Tree$를 제안한다. 자기 조직화 맵 기잔 $R^{*}-Tree$는 고차원 데이터를 좀더 스칼라화해서 탐색할 수 있도록 SOM과 $R^{*}-Tree$를 결합하여 구축한 인덱싱 기법이다. 자기 조직 맵은 고차원 특징 벡터들로부터 2차원 공간으로의 맵핑을 제공한다. 그러나 맵을 위상 특징 맵이라 하고 인접 노느에서 서로 유사한 특징 벡터들을 모아서 입력데이터의 특징 공간들 속에 유사성을 보존하는데 위상 특징 맵의 각 노드는 코드북 벡터를 가지고 있다. 실험적으로 4만개의 이미지로부터 추출된 색깔 특징 벡터들을 이용하여 자기 조직화 맵 기반 $R^{*}-Tree$의 검색시간 비용과 자기 조직화 맵과 $R^{*}-Tree$의 검색 시간 비용을 비교한다. 그 결과 $R^{*}-Tree$를 구축하는데 필요한 노드 수와 검색 시간 비용이 감소됨으로써 자기 조직화 맵 기반 $R^{*}-Tree$는 자기 조직화 맵과 $R^{*}-Tree$보다 훨씬 우수한 성능을 나타냄이 입증되었다.

  • PDF

도로 주행환경 분석을 위한 빅데이터 플랫폼 구축 정보기술 인프라 개발 (Development of Information Technology Infrastructures through Construction of Big Data Platform for Road Driving Environment Analysis)

  • 정인택;정규수
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.669-678
    • /
    • 2018
  • 본 연구는 차량센싱데이터, 공공데이터 등 다종의 빅데이터를 활용하여 주행환경 분석 플랫폼 구축을 위한 정보기술 인프라를 개발하였다. 정보기술 인프라는 H/W 기술과 S/W 기술로 구분할 수 있다. 먼저, H/W 기술은 빅데이터 분산 처리를 위한 병렬처리 구조의 소형 플랫폼 서버를 개발하였다. 해당 서버는 1대의 마스터 노드와 9대의 슬래이브 노드로 구성하였으며, H/W 결함에 따른 데이터 유실을 막기 위하여 클러스터 기반 H/W 구성으로 설계하였다. 다음으로 S/W 기술은 빅데이터 수집 및 저장, 가공 및 분석, 정보시각화를 위한 각각의 프로그램을 개발하였다. 수집 S/W의 경우, 실시간 데이터는 카프카와 플럼으로 비실시간 데이터는 스쿱을 이용하여 수집 인터페이스를 개발하였다. 저장 S/W는 데이터의 활용 용도에 따라 하둡 분산파일시스템과 카산드라 DB로 구분하여 저장하는 인터페이스를 개발하였다. 가공 S/W는 그리드 인덱스 기법을 적용하여 수집데이터의 공간 단위 매칭과 시간간격 보간 및 집계를 위한 프로그램을 개발하였다. 분석 S/W는 개발 알고리즘의 탐재 및 평가, 장래 주행환경 예측모형 개발을 위하여 제플린 노트북 기반의 분석 도구를 개발하였다. 마지막으로 정보시각화 S/W는 다양한 주행환경 정보제공 및 시각화를 위하여 지오서버 기반의 웹 GIS 엔진 프로그램을 개발하였다. 성능평가는 개발서버의 메모리 용량과 코어개수에 따른 연산 테스트를 수행하였으며, 타 기관의 클라우드 컴퓨팅과도 연산성능을 비교하였다. 그 결과, 개발 서버에 대한 최적의 익스큐터 개수, 메모리 용량과 코어 개수를 도출하였으며, 개발 서버는 타 시스템 보다 연산성능이 우수한 것으로 나타났다.