• Title/Summary/Keyword: 최적 매칭 노드

Search Result 7, Processing Time 0.024 seconds

Retargetable Intermediate Code Optimization System Using Tree Pattern Matching Techniques (트리패턴매칭기법의 재목적 가능한 중간코드 최적화 시스템)

  • Kim, Jeong-Suk;O, Se-Man
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2253-2261
    • /
    • 1999
  • ACK generates optimized code using the string pattern matching technique in pattern table generator and peephole optimizer. But string pattern matching method is not effective due to the many comparative actions in pattern selection. We designed and implemented the EM intermediate code optimizer using tree pattern matching algorithm composed of EM tree generator, optimization pattern table generator and tree pattern matcher. Tree pattern matching algorithm practices the pattern matching that centering around root node with refer to the pattern table, with traversing the EM tree by top-down method. As a result, compare to ACK string pattern matching methods, we found that the optimized code effected to pattern selection time, and contributed to improved the pattern selection time by about 10.8%.

  • PDF

Automatic Scheme Matching using Classification and User update (자동분류와 사용자업데이트를 이용한 스키마 매칭)

  • Lee, Myung-Joo;Shin, Hyun-Doo;Park, So-Ra;Hwang, Soo-Chan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.102-104
    • /
    • 2011
  • 서로 다른 XML 스키마를 바탕으로 작성된 XML 문서간의 비교 및 검색을 위해서는 두 스키마 사이의 연관관계를 계산하는 스키마 매칭 과정이 필수적이다. 스키마 매칭방법으로는 구조적 연관성을 비교하는 방법, 의미적 연관성을 계산하는 방법, 타입의 연관성을 계산하는 방법이 존재한다. 또한, 자동분류기법을 사용하여 연관성을 계산하는 방법도 존재한다. 본 논문에서는 XML 문서의 비교을 위한 효율적인 스키마 매칭 방법을 제안한다. 제안된 방법은 두 단계로 구성된다. 먼저 자동분류기법을 사용하여 단말노드 사이의 매칭정도를 계산한다. 또한 의미적, 구조적, 타입의 연관성도 계산하여 최적의 매칭결과를 선택한다. 특히 의미적 연관성은 사용자 피드백에 의해 점증적으로 갱신되는 온톨로지에 기반한다.

A Study on eSPN Algorithm for Searching the Shortest Path (최적 경로 탐색을 위한 eSPN 알고리즘에 관한 연구)

  • Ko, Young-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.585-586
    • /
    • 2009
  • 홉필드 네트웍은 패턴 매칭과 더불어 최적화 문제를 푸는 도구로 사용될 수 있다. Ali에 의해 제안된 최적 경로 탐색 알고리즘을 개선하여 계산량을 대폭 줄이고 효과적으로 최적 경로를 탐색할 수 있다. 노드의 제곱인 브랜치수의 뉴런이 필요한 Ali 알고리즘은 탐색 네트워크가 커지면 많은 시간이 소요되는 단점이 있다. 본 논문은 계산량은 줄이면서 효과적으로 최적 경로를 탐색하는 방법을 제안한다.

Study on the Shortest Path by the energy function in Hopfield neworks (홉필드 네트웍에서 에너지 함수를 이용한 최적 경로 탐색에 관한 연구)

  • Ko, Young-Hoon;Kim, Yoon-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.215-221
    • /
    • 2010
  • Hopfield networks have been proposed as a new computational tool for finding the shortest path of networks. Zhang and Ali studied the method of finding shortest path by expended neurons of Hopfield networks. Ali Algorithm is well known as the tool with the neurons of branch numbers. Where a network grows bigger, it needs much more time to solve the problem by Ali algorithm. This paper modifies the method to find the synapse matrix and the input bias vector. And it includes the eSPN algorithm after proper iterations of the Hopfield network. The proposed method is a tow-stage method and it is more efficient to find the shortest path.The proposed method is verified by three sample networks. And it could be more applicable then Ali algorithm because it's fast and easy. When the cost of brach is changed, the proposed method works properly. Therefore dynamic cost-varing networks could be used by the proposed method.

Globally Optimal Recommender Group Formation and Maintenance Algorithm using the Fitness Function (적합도 함수를 이용한 최적의 추천자 그룹 생성 및 유지 알고리즘)

  • Kim, Yong-Ku;Lee, Min-Ho;Park, Soo-Hong;Hwang, Cheol-Ju
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.1
    • /
    • pp.50-56
    • /
    • 2009
  • This paper proposes a new algorithm of clustering similar nodes defined as nodes having similar characteristic values in pure P2P environment. To compare similarity between nodes, we introduce a fitness function whose return value depends only on the two nodes' characteristic values. The higher the return value is, the more similar the two nodes are. We propose a GORGFM algorithm newly in conjunction with the fitness function to recommend and exchange nodes' characteristic values for an interest group formation and maintenance. With the GORGFM algorithm, the interest groups are formed dynamically based on the similarity of users, and all nodes will highly satisfy with the information recommended and received from nodes of the interest group. To evaluate of performance of the GORGFM algorithm, we simulated a matching rate by the total number of nodes of network and the number of iterations of the algorithm to find similar nodes accurately. The result shows that the matching rate is highly accurate. The GORGFM algorithm proposed in this paper is highly flexible to be applied for any searching system on the web.

SOM-Based $R^{*}-Tree$ for Similarity Retrieval (자기 조직화 맵 기반 유사 검색 시스템)

  • O, Chang-Yun;Im, Dong-Ju;O, Gun-Seok;Bae, Sang-Hyeon
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.507-512
    • /
    • 2001
  • Feature-based similarity has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects. the performance of conventional multidimensional data structures tends to deteriorate as the number of dimensions of feature vectors increase. The $R^{*}-Tree$ is the most successful variant of the R-Tree. In this paper, we propose a SOM-based $R^{*}-Tree$ as a new indexing method for high-dimensional feature vectors. The SOM-based $R^{*}-Tree$ combines SOM and $R^{*}-Tree$ to achieve search performance more scalable to high-dimensionalties. Self-Organizingf Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two-dimensional space. The map is called a topological feature map, and preserves the mutual relationships (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. We experimentally compare the retrieval time cost of a SOM-based $R^{*}-Tree$ with of an SOM and $R^{*}-Tree$ using color feature vectors extracted from 40,000 images. The results show that the SOM-based $R^{*}-Tree$ outperform both the SOM and $R^{*}-Tree$ due to reduction of the number of nodes to build $R^{*}-Tree$ and retrieval time cost.

  • PDF

Development of Information Technology Infrastructures through Construction of Big Data Platform for Road Driving Environment Analysis (도로 주행환경 분석을 위한 빅데이터 플랫폼 구축 정보기술 인프라 개발)

  • Jung, In-taek;Chong, Kyu-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.669-678
    • /
    • 2018
  • This study developed information technology infrastructures for building a driving environment analysis platform using various big data, such as vehicle sensing data, public data, etc. First, a small platform server with a parallel structure for big data distribution processing was developed with H/W technology. Next, programs for big data collection/storage, processing/analysis, and information visualization were developed with S/W technology. The collection S/W was developed as a collection interface using Kafka, Flume, and Sqoop. The storage S/W was developed to be divided into a Hadoop distributed file system and Cassandra DB according to the utilization of data. Processing S/W was developed for spatial unit matching and time interval interpolation/aggregation of the collected data by applying the grid index method. An analysis S/W was developed as an analytical tool based on the Zeppelin notebook for the application and evaluation of a development algorithm. Finally, Information Visualization S/W was developed as a Web GIS engine program for providing various driving environment information and visualization. As a result of the performance evaluation, the number of executors, the optimal memory capacity, and number of cores for the development server were derived, and the computation performance was superior to that of the other cloud computing.