• Title/Summary/Keyword: 최적 금형설계

Search Result 97, Processing Time 0.022 seconds

A Study on Decision of gate location for Injection molding of Automobile air cleaner Upper cover (자동차용 에어클리너 상부커버 사출성형에서 게이트의 위치 결정)

  • Jang, Sung-Min;Kim, In-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4411-4417
    • /
    • 2015
  • The proper design of the gate location for injection molding of plastic goods is obtained from three-dimensional injection molding analysis for various design alternatives. This paper is study on effect of gate location in injection molding. It have a decisive impact on productivity and quality of plastic goods. This objectives of this paper is to analysis effect of hot runner gate location for resin filling, weld line, injection pressure to manufacture of automobile air cleaner upper case with injection molding machine. Thus, to analysis these problems in this paper, location of gate are gave variety in 4 CASEs. In this paper, the CAE simulation considering each variations in location of gate is performed to predict the cause of faulty which appears in the injection molding process.

The Arrangement of Heaters for Rubber Injection Molds using FEM and Optimal Design Method (유한요소법과 최적설계 기법을 이용한 고무 사출 금형 히터 배치)

  • Kim, Myung-Hun;Han, Jeong-Young;Choi, Eun-Ho;Bae, Won-Byong;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.34-39
    • /
    • 2011
  • Temperature control of a rubber injection mold is important for the dimensional accuracy of product. The main objective of this paper is to optimize the arrangement of heaters by FEM and optimal design method. Firstly, 3-dimensional transient heat transfer analysis was carried out for a square specimen mold. Results of FE analysis are a good agreement with the experimental results, showing about 1.22~7.22% error in temperature distribution. Secondly, we suggested the optimal method about an arrangement of heaters of rubber injection mold by using the optimal design technique. Distances between heater's center and the contact surface of mold, distances between heater's center and symmetric surface were considered as design variables. And the variances between the temperatures of cavity surfaces and their average temperature were used as the objective functions. Applying the optimal solution, the temperature variation was improved about 52.9~88.1 % compared to the existing mold. As a result of sensitivity analysis for design variables, design variables parallel to the direction of the split plane in mold affect the largest on the surface temperature variation in mold cavity.

Development of an Integrated Simulation System and its Application to Casting Design

  • Lee, Young-Chul;Choi, Jeong-Kil;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.552-559
    • /
    • 1997
  • 주조방안설계를 위한 pre-processor, main-solver 그리고 post-processor로 구성된 통합 응고해석 시스템을 개발하였다. Pre-processor는 퍼스널 컴퓨터에서 사용되는 상용 CAD 프로그램인 AutoCAD를 사용하였다. Main-solver는 주조과정중의 충진거동을 해석한 유동해석 프로그램과 3차원 열전달 응고해석을 통합하여 냉각수 시스템으로 제어되는 금형 반복주조법에서의 응고양상을 해석할 수 있다. Post-processor는 cavity내의 용탕충진거동, 주형내의 온도분포, 응고시간등을 3차원 그래픽으로 처리할 수 있게 설계하였다. 개발된 시스템의 현장적용 가능성을 검증하기 위하여 대형주강 밀하우징, 자동차휠 주조용품, 밸브블럭등의 시제품의 열유동해석에 적용하였다. 본 연구에서 개발된 CastDesigner는 중소기업형 주조현장에서 PC용 CAD/CAE system 구축을 통한 최적주조방안 설계용 열유동해석 프로그램으로 사료된다.

  • PDF

Structural Design Optimization of a High Speed Machining Center Using a Simple Genetic Algorithm (금형가공센터 고속 이송체의 최적설계)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.74-78
    • /
    • 2001
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduce to the structural design optimization of a high speed machining center. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure and meet some design constraints simultaneously. Dimensional thicknesses of the thirteen structural members along the static force loop of the machine structure are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body was reduced to 9.1% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even thought they were slightly increased than before.

  • PDF

Structural Design Optimization of a High Speed Machining Center by Using a Simple Genetic Algorithm (유전 알고리즘을 이용한 고속 금형센터의 구조설계 최적화)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1006-1009
    • /
    • 2000
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduced in order to minimize the static compliance, the dynamic compliance, and the weight of a high speed machining center simultaneously. Dimensional thicknesses of the eight structural members on the static force loop are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body only was reduced to 57.75% and the weight of the whole machining center was reduced to 46.2% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even though they were slightly increased than before.

  • PDF

Characterization of Al-15wt.%Si Functional Automotive Component by Partial Squeeze and Vacuum Die Casting Process

  • Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.24 no.3
    • /
    • pp.153-158
    • /
    • 2004
  • 본 연구에서는 기존 고압주조법의 해결과제인 고속충진 시 혼입되는 금형 cavity 내부의 유해 gas에 의한 gas porosity를 제어하기 위한 고속 사출 전 진공시스템 설계와 응고과정에서 발생되는 응고수축에 의한 shrinkage를 효과적으로 제어하기 위한 국부가압 스퀴즈의 조합시스템의 설계로 최적의 기계적 성질을 갖는 부품을 제조할 수 있는 공법을 개발하였다. 또한 개발된 신공법으로 자동차용 고내마모성 요구부품인 Reaction Shaft Support에 기존의 주철제를 대체하는 Al-15wt.%Si 과공정합금을 적용하여 시제품을 제조하였으며, 기존의 공법과 비교한 결과, 내부 porosity가 없는 미세하고 균일한 공정 및 초정 Si의 미세조직을 얻을 수 있었고, 기계적 특성평가에서도 매우 우수한 결과를 얻을 수 있었다.

Optimum micro dimple configuration on the elastomer seal surface (탄성중합체 시일 표면의 미세 딤플에 대한 최적설계)

  • Yoo, Dae-Won
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.1-10
    • /
    • 2020
  • The seal plays a role in preventing oil leakage when the lip and the rotating shaft come into contact with the fluid and air pressure. Recently, micro dimples or micro pockets are processed and used on the lubrication surfaces of thrust bearings, mechanical bearings, and piston rings. Compared to a smooth surface, micro dimples reduce friction and increase the life of parts. This paper analyzed various kinds of micro dimple shapes on the sealing surface, i.e. circle, rectangle, triangle, and trapezoid. For this purpose, Introduced the design of experiments to work out a micro dimple configuration, unlikely to be damaged from cracks and low in contact stress. As a result, the triangular dimple showed the best results. Optimal factors were dimple size 0.15 mm, dimple depth 0.0383 mm, dimple density 40%, and the maximum equivalent stress was 9.1455 MPa, and the maximum contact pressure was 9.6612 MPa. This paper analyzed the optimal shape of dimples by finite element analysis. As a research project, experiments and comparative analysis of micro dimple shapes are needed.

Optimization of injection molding process for plastic keypad on mobile phone (휴대폰 키패드의 최적 사출성형 공정 설계)

  • Park, Eun-Seo;Shin, Sang-Eun;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.34-38
    • /
    • 2017
  • Deformation frequently occurring in injection molded products is a phenomenon displayed due to uneven shrinkage distribution and orientation of the whole molded product. Shrinkage deformation is a very serious problem because it causes deformation of the molded article and shortens the performance of the product. In this paper, we are focusing on the warpage of keypad in mobile phone. In other words, we focused on minimizing keypad deformation. In the study, the Taguchi method was applied to find the injection molding conditions that minimize the deformation of the keypad. In the case of this keypad, the main factors influencing the shrinkage deformation were predicted as the melting temperature, coolant temperature and cooling time. In addition, the optimum molding conditions were obtained and the shrinkage strain was minimized. Experiments for the Taguchi method and verification of optimal molding conditions were performed using an injection molding analysis program.

Design Optimization of a Rapid Moving Body Structure for a Machining Center Using G.A. with Variable Penalty Function (가변 벌점함수 유전알고리즘을 이용한 금형가공센터 고속이송체 구조물의 최적설계)

  • 최영휴;차상민;김태형;박보선;최원선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.504-509
    • /
    • 2003
  • In this paper, a multi-step optimization using a G.A.(Genetic Algorithm) with variable penalty function is introduced to the structural design optimization of a high speed machining center. The design problem, in this case, is to find out the best cross-section shapes and dimensions of structural members which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. The first step is the cross-section shape optimization, in which only the section members are selected to survive whose cross-section area have above a critical value. The second step is a static design optimization, in which the static compliance and the weight of the machine structure are minimized under some dimensional constraints and deflection limits. The third step is a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints as those of the second step. The proposed design optimization method was successful applied to the machining center structural design optimization. As a result, static and dynamic compliances were reduced to 16% and 53% respectively from the initial design, while the weight of the structure are also reduced slightly.

  • PDF

Optimal Die Design for Uniform Microstructure in Hot Extruded Product (열간압출품의 미세조직 균일화를 위한 최적 금형설계)

  • 이상곤;고대철;류경희;이선봉;김병민
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.471-481
    • /
    • 1999
  • The properties of deformed products are generally dependent upon the distribution of microstureture. It is, therefore, necessary to make the distribution of microstureture uniform in order to achieve the best balance of properties in the final product. This is often a demanding task, even for conventional materials. It is become essential to achieving mechanical integrity and a desired combination of microstructure and properties. The objective mechanical integrity and a desired combination of microsttucture and properties. The objective of this study is to design the optimal die profile which can yield more uniform microstructure in hot extruded product. The microstructure evolution, such as dynamic and static recrystallization as well as grain growth, is investigated using the program com-bined with yada and Senuma's empirical equations and rigid-thermoviscoplastic finite element method. The die profile of hot extrusion is represented by Bezier-curve to define all available profile. In order to obtain the optimal die profile which yields uniform microstructure in the product the FPS(Flexible Polyhedron Search) method is applied to the present study. To validate the result of present study the experimental hot extrusion is performed and the result is compared with that of simulation.

  • PDF