• Title/Summary/Keyword: 최적 경로

Search Result 2,320, Processing Time 0.033 seconds

Finding the One-to-One Optimum Path Considering User's Route Perception Characteristics of Origin and Destination (Focused on the Origin-Based Formulation and Algorithm) (출발지와 도착지의 경로인지특성을 반영한 One-to-One 최적경로탐색 (출발지기반 수식 및 알고리즘을 중심으로))

  • Shin, Seong-Il;Sohn, Kee-Min;Cho, Chong-Suk;Cho, Tcheol-Woong;Kim, Won-Keun
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.99-110
    • /
    • 2005
  • Total travel cost of route which connects origin with destination (O-D) is consist of the total sum of link travel cost and route perception cost. If the link perception cost is different according to the origin and destination, optimal route search has limitation to reflect the actual condition by route enumeration problem. The purpose of this study is to propose optimal route searching formulation and algorithm which is enable to reflect different link perception cost by each route, not only avoid the enumeration problem between origin and destination. This method defines minimum unit of route as a link and finally compares routes using link unit costs. The proposed method considers the perception travel cost at both origin and destination in optimal route searching process, while conventional models refect the perception cost only at origin. However this two-way searching algorithm is still not able to guarantee optimum solution. To overcome this problem, this study proposed an orign based optimal route searching method which was developed based on destination based optimal perception route tree. This study investigates whether proposed numerical formulas and algorithms are able to reflect route perception behavior reflected the feature of origin and destination in a real traffic network by the example research including the diversity of route information for the surrounding area and the perception cost for the road hierarchy.

Development of a Method for Partial Searching Technique for Optimal Path Finding in the Long Journey Condition (장거리 최적경로탐색을 위한 부분탐색기법 연구)

  • Bae, Sanghoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.361-366
    • /
    • 2006
  • It is widely known that the dynamic optimal path algorithm, adopting real-time path finding, can be supporting an optimal route with which users are satisfied economically and accurately. However, this system has to search optimal routes frequently for updating them. The proposed concept of optimizing search area lets it reach heuristic optimal path rapidly and efficiently. Since optimal path should be increased in proportion to an distance between origin and destination, tremendous calculating time and highly efficient computers are required for searching long distance journey. In this paper, as a result of which the concepts of partial solution and representative path are suggested. It was possible to find an optimal route by decreasing a half area in comparison with the previous method. Furthermore, as the size of the searching area is uniform, comparatively low efficient computer is required for long distance trip.

Quantization Data Transmission for Optimal Path Search of Multi Nodes in cloud Environment (클라우드 환경에서 멀티 노드들의 최적 경로 탐색을 위한 양자화 데이터 전송)

  • Oh, HyungChang;Kim, JaeKwon;Kim, TaeYoung;Lee, JongSik
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.2
    • /
    • pp.53-62
    • /
    • 2013
  • Cloud environment is one in the field of distributed computing and it consists of physical nodes and virtual nodes. In distributed cloud environment, an optimal path search is that each node to perform a search for an optimal path. Synchronization of each node is required for the optimal path search via fast data transmission because of real-time environment. Therefore, a quantization technique is required in order to guarantee QoS(Quality of Service) and search an optimal path. The quantization technique speeds search data transmission of each node. So a main server can transfer data of real-time environment to each node quickly and the nodes can perform to search optimal paths smoothly. In this paper, we propose the quantization technique to solve the search problem. The quantization technique can reduce the total data transmission. In order to experiment the optimal path search system which applied the quantized data transmission, we construct a simulation of cloud environment. Quantization applied cloud environment reduces the amount of data that transferred, and then QoS of an application for the optimal path search problem is guaranteed.

Efficient Bidirectional Search Algorithm for Optimal Route (최적 경로를 보장하는 효율적인 양방향 탐색 알고리즘)

  • 황보택근
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.745-752
    • /
    • 2002
  • A* algorithm is widely used in optimal car route search which is a kind of informed search, since the locations of starting and ending points are known a priori. Unidirectional A* algorithm requires considerable search time but guarantees a optimal path, bidirectional A* algorithm does not guarantee a optimal path and takes even longer search time than unidirectional search to guarantee a optimal path. In this paper, a new bidirectional A* algorithm which requites less search time and guarantees a optimal path is proposed. To evaluate the efficiency of the proposed algorithm, several experiments are conducted in real road map and the results show that the algorithm is very effective in terms of finding a optimal path and search time.

  • PDF

A Method to determine Search Space of Hierarchical Path Algorithm for Finding Optimal Path (최적 경로 탐색을 위한 계층 경로 알고리즘의 탐색 영역 결정 기법)

  • Lee, Hyoun-Sup;Kim, Jin-Deog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.565-569
    • /
    • 2007
  • To find optimal path is killer application in the telematics system. The shortest path of conventional system, however, isn't always optimal path. That is, the path with minimum travelling time could be defined as optimal path in the road networks. There are techniques and algorithms for finding optimal path. Hierarchical path algorithm categorizes road networks into major layer and minor layer so that the performance of operational time increases. The path searched is accurate as much as optimal path. At above 2 system, a method to allocate minor roads to major road region influences the performance extremely. This paper proposes methods to determine search space for selecting major roads in the hierarchical path algorithm. In addition, methods which apply the proposed methods to hierarchical route algorithm is presented.

  • PDF

Generation of an Optimal Trajectory for Rotorcraft Subject to Multiple Waypoint Constraints (다중 경로점 제한 조건하의 헬리콥터의 최적 경로 생성)

  • Choe,Gi-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.50-57
    • /
    • 2003
  • Controlling rotorcraft to fly precisely through multiple, irregularly, and closely spaced waypoints is a common and practical mission. However, finding an optimal trajectory for this kind of mission is quite challenging. Usability of traditional approaches such as inverse control or direct methods to this kind of problem is limited because of either limitation on the specification of the constraints or requirement of extensive computation time. This paper proposes a method that can easily compute the full trajectory and control history for rotorcraft to pass through waypoints while satisfying other general constraints of states such as velocities and attitudes on each waypoint. The proposed method is applied to rotorcraft guidance problems of slalom and linear trajectory in the middle of general curved trajectory. The algorithm is test for various situations and demonstrates its usability.

A Design of Optimal Path Search Algorithm using Information of Orientation (방향성 정보를 이용한 최적 경로 탐색 알고리즘의 설계)

  • Kim Jin-Deog;Lee Hyun-Seop;Lee Sang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.454-461
    • /
    • 2005
  • Car navigation system which is killer application fuses map management techniques into CPS techniques. Even if the existing navigation systems are designed for the shortest path, they are not able to cope efficiently with the change of the traffic flow and the bottleneck point of road. Therefore, it is necessary to find out shortest path algorithm based on time instead of distance which takes traffic information into consideration. In this paper, we propose a optimal path search algorithm based on the traffic information. More precisely. we introduce the system architecture for finding out optimal paths, and the limitations of the existing shortest path search algorithm are also analyzed. And then, we propose a new algorithm for finding out optimal path to make good use of the orientation of the collected traffic information.

A Study On Bi-Criteria Shortest Path Model Development Using Genetic Algorithm (유전 알고리즘을 이용한 이중목적 최단경로 모형개발에 관한 연구)

  • 이승재;장인성;박민희
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.3
    • /
    • pp.77-86
    • /
    • 2000
  • The shortest path problem is one of the mathematical Programming models that can be conveniently solved through the use of networks. The common shortest Path Problem is to minimize a single objective function such as distance, time or cost between two specified nodes in a transportation network. The sing1e objective model is not sufficient to reflect any Practical Problem with multiple conflicting objectives in the real world applications. In this paper, we consider the shortest Path Problem under multiple objective environment. Wile the shortest path problem with single objective is solvable in Polynomial time, the shortest Path Problem with multiple objectives is NP-complete. A genetic a1gorithm approach is developed to deal with this Problem. The results of the experimental investigation of the effectiveness of the algorithm are also Presented.

  • PDF

Development of Optimal Path Planning based on Density Data of Obstacles (장애물 밀집 정보 기반 최적 경로계획 기술 개발)

  • Kang, Won-Seok;Kim, Jin-Wook;Kim, Young-Duk;Lee, Seung-Hyun;An, Jin-Ung
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.366-368
    • /
    • 2009
  • 본 논문에서는 모바일 로봇이 작업하는 공간상에서 빠르고 안전한 최적 경로계획을 수행할 수 있게 하는 가변적 리드 맵을 이용한 장애물 밀집 정보 기반 경로계획을 제안한다. 모바일 로봇이 작업 공간에 대해서 빠르고 안전한 경로계획을 해 클러스터링 기법을 이용하여 정적 및 동적 장애물의 분포에 대한 맵 정보를 재구성하여 정보화 시킨다. 최적의 경로계획을 위해서는 재구성된 장애물 밀집 클러스터 데이터를 이용하여 전통적 기법의 GA 방법을 변형한 최적 경로계획을 수행한다. 제안한 기술의 효율성을 검증하기 위해 그리드 기반 경로계획 중의 하나인 A*알고리즘과 다양한 맵을 이용하여 성능 비교를 수행하였다. 실험결과 제안한 경로계획 기술은 기존 알고리즘 보다 빠른 처리 성능과 동적 장애물이 밀집한 지역을 회피하는 최적 경로계획을 수행함을 확인하였다.

  • PDF

Development of the Multi-Path Finding Model Using Kalman Filter and Space Syntax based on GIS (Kalman Filter와 Space Syntax를 이용한 GIS 기반 다중경로제공 시스템 개발)

  • Ryu, Seung-Kyu;Lee, Seung-Jae;Ahn, Woo-Young
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.149-158
    • /
    • 2005
  • The object of this paper is to develop the shortest path algorithm. The existing shortest path algorithm models are developed while considering travel time and travel distance. A few problems occur in these shortest path algorithm models, which have paid no regard to cognition of users, such as when user who doesn't have complete information about the trip meets a strange road or when the route searched from the shortest path algorithm model is not commonly used by users in real network. This paper develops a shortest path algorithm model to provide ideal route that many people actually prefer. In order to provide the ideal shortest path with the consideration of travel time, travel distance and road cognition, travel time is predicted by using Kalman filtering and travel distance is predicted by using GIS attributions. The road cognition is considered by using space data of GIS. Optimal routes provided from this paper are shortest distance path, shortest time path, shortest path considering distance and cognition and shortest path considering time and cognition.