• Title/Summary/Keyword: 최적환경조건

Search Result 1,416, Processing Time 0.027 seconds

Sorption Efficiency of the Bamboo Charcoal to Remove the Cesium in the Contaminated Water System (오염수계 내 세슘 제거를 위한 대나무 활성탄의 흡착효율 규명)

  • Ahn, Joungpil;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.87-97
    • /
    • 2018
  • The cesium (Cs) removal from the contaminated water system has been considered to be difficult because the cesium likes to exist as soluble phases such as ion and complexes than the solid in water system. Many researches have focused on developing the breakthrough adsorbent to increase the cesium removal efficiency in water. In this study, the laboratory scale experiments were performed to investigate the feasibility of the adsorption process using the bamboo charcoal for the Cs contaminated water system. The Cs removal efficiency of the bamboo charcoal were measured and the optimal adsorption conditions were determined by the adsorption batch experiments. Total 5 types of commercialized bamboo charcoals in Korea were used to identify their surface properties from SEM-EDS and XRD analyses and 3 types of bamboo charcoals having large specific surface areas were used for the adsorption batch experiment. The batch experiments to calculate the Cs removal efficiency were performed at conditions of various Cs concentration (0.01 - 10 mg/L), pH (3 - 11), temperature ($5-30^{\circ}C$), and adsorption time (10 - 120 min.). Experimental results were fitted to the Langmuir adsorption isotherm curve and their adsorption constants were determined to understand the adsorption properties of bamboo charcoal for Cs contaminated water system. From results of SEM-EDS analyses, the surfaces of bamboo charcoal particles were composed of typical fiber structures having various pores and dense lamella structures in supporting major adsorption spaces for Cs. From results of adsorption batch experiments, the Cs-133 removal efficiency of C type bamboo charcoal was the highest among those of 3 bamboo charcoal types and it was higher than 75 % (maximum of 82 %) even when the initial Cs concentration in water was lower than 1.0 mg/L, suggesting that the adsorption process using the bamboo charcoal has a great potential to remove Cs from the genuine Cs contaminated water, of which Cs concentration is low (< 1.0 mg/L) in general. The high Cs removal efficiency of bamboo charcoal was maintained in a relatively wide range of temperatures and pHs, supporting that the usage of the bamboo charcoal is feasible for various types of water. Experimental results were similar to the Langmuir adsorption model and the maximum amount of Cs adsorption (qm:mg/g) was 63.4 mg/g, which was higher than those of commercialized adsorbents used in previous studies. The surface coverage (${\theta}$) of bamboo charcoal was also maintained in low when the Cs concentration in water was < 1.0 mg/L, investigating that the Cs contaminated water can be remediated up with a small amount of bamboo charcoal.

Influence of Organic Acids Residual Concentration by the Change of F/M Ratio on Sludge Settleability in Advanced Sewage Treatment Processes (하.폐수 고도처리시 F/M비 변화에 따른 유기산 잔류 농도가 슬러지 침강성에 미치는 영향)

  • Park, Young-Ki;Kim, Young-Il;Kim, Sl-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2006
  • The biological nutrient treatment is formed with repetition and rearrangement of anaerobic, anoxic and oxic tank. In this case, VFAs is generated in the anaerobic tank and the anoxic tank. The VFAs is an important factor for removal of nitrogen and phosphate and SVI. So, in this study I investigated to find a relationship among the generation rate of the VFAs according to the change of F/M ratio and the characteristic which can eliminate organic matter and nitrogen according to the change of residual concentration of the VFAs and the efficiency of the process and also SVI in wastewater treatment. $A^2/O$ process was used for wastewater treatment. F/M ratio was under the control of the change of MLSS concentration. When the F/M ratio was changed from 0.16 to 0.08 kg-BOD/kg-MLSS/day, the VFAs's production volume increased based on the reduction of F/M ratio in batch reaction. And the residual concentration of the VFAs decreased at first and then increased later. SVI and SS were high when F/M ratio was $0.16kg/kg{\cdot}d$ and showed stable status when F/M ratio decreased $0.11{\sim}0.13kg/kg{\cdot}d$. However, SVI and SS continuously increased with decrease of F/M ratio and were high at $0.08kg/kg{\cdot}d$. In the result of comparison between residual concentration of the VFAs and denitrification rate in anoxic tank, the less residual volume of the VFAs was in anoxic tank, the higher denitrification ratio became. The optimal residual-concentration of the VFAs considering SVI and removal efficiency of nitrogenwas $1.4{\sim}2.2mg/L$. At that time F/M ratio was $0.11{\sim}0.13$ kg-BOD/kg-MLSS/day.

Synthesis of Zeolite P1 and Analcime from Sewage Sludge Incinerator Fly Ash (하수슬러지 소각 비산재를 이용한 제올라이트 P1 및 Analcime의 합성)

  • Lee, Je-Seung;Chung, Sook-Nye;Park, Chul-Hwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.659-665
    • /
    • 2008
  • This study is about zeolite synthesis from the sewage sludge incinerator fly ash of "S" sewage treatment center located in Seoul. For this purpose, the properties of raw fly ash as starting material, the hydrothermal conditions for zeolite synthesis and the environmental applicabilities of synthesized zeolites were examined. Fly ash from sewage sludge incinerator has large quantities of SiO$_2$ and Al$_2$O$_3$ and their contents are 42.8 wt.% and 21.2 wt.% respectively. So fly ash is considered to be possible starting material for zeolite synthesis. The results from leaching test of fly ash showed that the concentration of hazardous metals were very low as compared with the Korea leaching standard of the Waste Management Law. But the concentration from total recoverable test of fly ash were higher than the fertilizer standard of Fertilizer Management Law. Major zeolite products synthesized by hydrothermal reaction are analcime in teflon vessel and zeolite P1 in borosilicate flask. Optimum conditions for the synthesis of analcime were 1 N of NaOH concentration, 16 hour of reaction time and 135$^{\circ}C$ of reaction temperature. For the zeolite P1 formation, the proper conditions were demonstrated to be 5 N of NaOH concentration, 16 hour reaction time and 130$^{\circ}C$ of reaction temperature in this study. Hazardous metal contents in the analcime product are similar with those in raw fly ash. In case of the zeolite P1, the contents are reduced to nearly a half. Raw fly ash and the analcime product showed NH$_4{^+}$ ion exchange capacity of 0$\sim$1.0 mg of NH$_4{^+}$g$^{-1}$ and 3.0$\sim$7.4 mg of NH$_4{^+}$g$^{-1}$, respectively. However, the zeolite P1 product reached exchange capacity to 14.6$\sim$17.8 mg of NH$_4{^+}$g$^{-1}$. This values are in the range of those of natural clinoptilolite and phillipsite. From this point of view, zeolite synthesis from sewage treatment sludge incinerator fly ash is a good alternative for solid waste recycling.

HPLC-MS/MS Detection and Sonodegradation of Bisphenol A in Water (HPLC-MS/MS를 이용한 Bisphenol A 분석 및 초음파에 의한 분해 특성 조사)

  • Park, Jong-Sung;Yoon, Yeo-Min;Her, Nam-Guk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.639-648
    • /
    • 2010
  • The optimal conditions for the analysis of BPA by HPLC-MS/MS was investigated and the ultrasound degradation capacity of the BPA, with the goal to establish the proper directions for analyzing infinitesimal quantities of BPA by HPLC-MS/MS was examined. The MDL and LOQ of BPA analyzed by HPLC-MS/MS were measured 0.13 nM and 1.3 nM respectively, its sensitivity about 620 and 32 times greater than HPLC-UV (MDL: 81.1 nM, LOQ: 811 nM) and FLD (MDL: 4.6 nM, LOQ: 46 nM). In other words, the new method enables the analysis of BPA with the accuracy up to one 1,180th of the amount specified in U.S. EPA guideline for drinking water. Degradation rate of BPA by ultrasound measured over 95% under 580 kHz and 1000 kHz frequency within 30 minutes of treatment, whereas the rate showed some decrease at 28 kHz frequency. At 580 kHz of ultrasound has proven to be the most effective among others at degradation rate and $k_1$ value, so we concluded that this frequency of ultrasound creates hospitable condition for the combined process of degradation by pyrolysis and oxidization. With the addition of 0.01 mM of $CCl_4$, BPA with the initial concentration of 1 ${\mu}M$ was degraded by more than 98% within 30 minutes, the $k_1$ value measured 5 minutes and 30 minutes into the experiment both showed increases by 1.4 and 1.1 times, respectively, compared with BPA without $CCl_4$. It is also found that the main degradation mechanism of BPA by ultrasound is oxidization process by OH radical, based on the fact that the addition of 10 mM of t-BuOH decreased the rate of BPA degradation by around 60%. However, 33% of BPA degradation rate obtained with the addition of t-BuOH implies further degradation done by pyrolysis or other sorts of radical beside OH radical.

Water Quality Improvement of Stagnant Water using an Upflow Activated Carbon Biofilm Process and Microbial Community Analysis (상향류 활성탄 생물막 공정을 이용한 정체 수역 수질 개선 및 공정 내 미생물 군집 해석)

  • Oh, Yu-Mi;Lee, Jae-Ho;Park, Jeung-Jin;Choi, Gi-Choong;Park, Tae-Joo;Lee, Tae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.23-32
    • /
    • 2010
  • The capacity of natural purification was limited by the interruption of natural flow and the problems such as eutrophication were occurred by nutritive salts accumulation in stagnant stream. Moreover, the inflow of non-point sources causes non-degradable materials to increase in stagnant stream. In this study, an upflow biological activated carbon (BAC) biofilm process comprised of anoxic, aerobic 1, and aerobic 2 reactors were introduced for treatment of stagnant stream and SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN, and TP were monitored in the upflow BAC biofilm reactors with continuous cycling. In order to simulate stagnant stream, the lake water of amusement park and golf course were stored as influent in a tank of $2m^3$ and hydraulic retention time (HRT) was changed into 6, 4, and 2 hours. At HRT 4hr and the lake water of amusement park as influent, the removal efficiencies of SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN, and TP showed the best water quality improvement and were 69.8, 83.0, 91.3, 74.1, 74.7, and 88.9%, respectively. At HRT 4hr and the lake water of golf course as influent, the removal efficiencies of SS, $BOD_5$, $COD_{Mn}$, $COD_{Cr}$, TN and TP were 78.5, 78.0, 80.2, 74.9, 55.6 and 97.5%, respectively. As the results of polymerase chain reaction - denaturing gel gradient electrophoresis (PCR-DGGE), microbial community was different depending on influent type. Fluorescence in situ hybridization (FISH) showed that nitrifying bacteria was dominant at HRT 4 hr. The biomass amount and microbial activities by INT-DHA test were not decrease even at lower HRT condition. In this study, the upflow BAC biofilm process would be considered to the water quality improvement of stagnant stream.

Supercritical Water Oxidation of Anionic Exchange Resin (초임계수 산화를 이용한 음이온교환수지 분해)

  • Han, Joo-Hee;Han, Kee-Do;Do, Seung-Hoe;Kim, Kyeong-Sook;Son, Soon-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.549-557
    • /
    • 2006
  • The characteristics of supercritical water oxidation have been studied to decompose the waste anionic exchange resins which were produced from a power plant. The waste resins from a power plant were mixture of anionic and cationic exchange resins. The waste anionic exchange resins had been separated from the waste resins using a solid-liquid fluidized bed. It was confirmed that the cationic exchange resins were not included in the separated anionic exchange resins by the elemental and thermogravimetric analysis. A slurry of anionic exchange resins which could be fed continuously to a supercritical water oxidation apparatus by a high pressure pump was prepared using a wet ball mill. Although the COD of liquid effluent had been reduced more than 99.9% at 25.0 MPa and $500^{\circ}C$ within 2 min, the total nitrogen content was reduced only 41%. The addition of nitric acid to the slurry could reduce the total nitrogen content in treated water. The central composite design as a statistical desist of experiments had been applied to optimize the conditions of decomposing anionic resin slurry by means of the COD and total nitrogen contents in treated waters as the key process output variables. The COD values of treated waters had been reduced sufficiently to $99.9{\sim}100%$ af the reaction conditions of $500{\sim}540^{\circ}C$, 25.0 MPa within 2 min. The effects of temperature and nitric acid concentration on COD were not significant. However, the effect of nitric acid concentration on the total nitrogen was found to be significant. The regression equation for the total nitrogen had been obtained with nitric acid concentration and the coefficient of determination($r^2$) was 95.8%.

Effects of Photoperiod and Light Intensity on the Growth and Glucosinolates Content of Three Brassicaceae Species in a Plant Factory (식물공장에서 광주기 및 광강도가 십자화과 3종의 생육과 글루코시놀레이트 함량에 미치는 영향)

  • Kim, Sunwoo;Bok, Gwonjeong;Shin, Juhyung;Park, Jongseok
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.416-422
    • /
    • 2022
  • This study was conducted to investigate the effect of each light intensity and photoperiod combination on the growth and glucosinolates (GSLs) content of three species of Brassicaceae plants under the same daily light integral (DLI) conditions. Seeds of leaf mustard (Brassica juncea (L.) Czern.), red mustard(Brassica juncea L.) and kale (Brassica oleracea L. var. acephala (DC.) Alef.) were sown in a rockwool cubes and grown for three weeks. DLI was set to 10 mol·m-2·d-1 and treated with 10h-280, 14h-200, 18h-155, 22h-127 µmol·m-2·s-1 for three weeks. As a result at 14h-200 µmol·m-2·s-1 treatment, shoot fresh/dry weight, the number of leaves, and leaf area were increased in leaf mustard and kale but there was no significant difference in other treatments. In the total GSLs content, the treatment of 14h-200 µmol·m-2·s-1 increased significantly 139.95, 135.87, 154.03% compared to 10h-280, 18h-155, 22h-127 µmol·m-2·s-1 treatment in red mustard, and 14h-200 µmol·m-2·s-1 treatment increased significantly 132.96, 132.96, 134.03% compared to other treatments in kale. In red mustard, the treatment of 18h-155 µmol·m-2·s-1 showed an increase in shoot fresh/dry weight and the total GSLs contents than other photoperiods and 14h-200 µmol·m-2·s-1 treatment, the number of leaves significantly 15.62, 12.12, and 32.14% higher than other photoperiods. Since the DLI response is different depending on species even for similar Brassicaceae crops, it is necessary to get more detailed results by conducting optical light quality studies and deriving optimal DLI conditions to achieve minimum power consumption and maximum efficiency.

Assessment of water supply reliability in the Geum River Basin using univariate climate response functions: a case study for changing instreamflow managements (단변량 기후반응함수를 이용한 금강수계 이수안전도 평가: 하천유지유량 관리 변화를 고려한 사례연구)

  • Kim, Daeha;Choi, Si Jung;Jang, Su Hyung;Kang, Dae Hu
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.993-1003
    • /
    • 2023
  • Due to the increasing greenhouse gas emissions, the global mean temperature has risen by 1.1℃ compared to pre-industrial levels, and significant changes are expected in functioning of water supply systems. In this study, we assessed impacts of climate change and instreamflow management on water supply reliability in the Geum River basin, Korea. We proposed univariate climate response functions, where mean precipitation and potential evaporation were coupled as an explanatory variable, to assess impacts of climate stress on multiple water supply reliabilities. To this end, natural streamflows were generated in the 19 sub-basins with the conceptual GR6J model. Then, the simulated streamflows were input into the Water Evaluation And Planning (WEAP) model. The dynamic optimization by WEAP allowed us to assess water supply reliability against the 2020 water demand projections. Results showed that when minimizing the water shortage of the entire river basin under the 1991-2020 climate, water supply reliability was lowest in the Bocheongcheon among the sub-basins. In a scenario where the priority of instreamflow maintenance is adjusted to be the same as municipal and industrial water use, water supply reliability in the Bocheongcheon, Chogang, and Nonsancheon sub-basins significantly decreased. The stress tests with 325 sets of climate perturbations showed that water supply reliability in the three sub-basins considerably decreased under all the climate stresses, while the sub-basins connected to large infrastructures did not change significantly. When using the 2021-2050 climate projections with the stress test results, water supply reliability in the Geum River basin was expected to generally improve, but if the priority of instreamflow maintenance is increased, water shortage is expected to worsen in geographically isolated sub-basins. Here, we suggest that the climate response function can be established by a single explanatory variable to assess climate change impacts of many sub-basin's performance simultaneously.

Kinetics of esterification of food waste oil by solid acid catalyst and reaction optimization (고체 산 촉매를 이용한 고산가 음폐유의 에스테르화 반응 동역학 연구 및 반응 최적화)

  • Lee, Hwa-Sung;Lee, Joon-Pyo;Lee, Jin-Suk;Kim, Deog-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.683-693
    • /
    • 2017
  • Transport biofuels have been recognized as a promising means to resolve the following issues like global warming, oil depletion and environmental pollutions. Among various biofuels, biodiesel has several advantages such as less emission of air pollutants and higher cetane values compared to diesel oil. Demand for biodiesel in Korea is increasing that leads to higher dependence on the imported feedstocks. Therefore, it is important to utilize the waste materials collected domestically for biodiesel production. Food waste oil collected in waste treatment facility has not been used for biodiesel production due to high free fatty contents in the oil. In this work, biodiesel conversion of food waste oil by Amberlyst 15 was studied. Synthetic and actual food waste oils have been used in the study. First, the effects of the major operating parameters including reaction temperature, methanol to oil molar ratio and catalyst loading on the conversion rates and yields were determined with synthetic waste oil. Kinetic modelling work was also done to determine the activation energy of the reaction. From the work, optimization reaction conditions were determined to be 383K, 1: 26.1 for methanol molar ratio to oil, 10 wt.% for catalyst loading and 360 min for reaction time. Activation energy of the reaction is determined to be 29.75 kJ/mol, lower than those reported in the previous works. So the solid catalyst, Amberlyst 15, was more efficient for esterification than the solid catalysts employed in the other works. Agitation rates have the negligible effects on the conversion rates and yields. With the identified optimization conditions, conversion of the actual food waste oil was also carried out. The esterification yield of actual food waste oil in 60 min was 13% lower than that of synthetic waste oil but the final yields in 240 min were similar each other, 98.12% for synthetic oil and 97.62% for actual waste oil.

A Hierarchical Grid Alignment Algorithm for Microarray Image Analysis (마이크로어레이 이미지 분석을 위한 계층적 그리드 정렬 알고리즘)

  • Chun Bong-Kyung;Jin Hee-Jeong;Lee Pyung-Jun;Cho Hwan-Gue
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.2
    • /
    • pp.143-153
    • /
    • 2006
  • Microarray which enables us to obtain hundreds and thousands of expression of gene or genotype at once is an epoch-making technology in comparative analysis of genes. First of all, we have to measure the intensity of each gene in an microarray image from the experiment to gain the expression level of each gene. But it is difficult to analyze the microarray image in manual because it has a lot of genes. Meta-gridding method and various auto-gridding methods have been proposed for this, but thew still have some problems. For example, meta-gridding requires manual-work due to some variations in spite of experiment in same microarray, and auto-gridding nay not carried out fully or correctly when an image has a lot of noises or is lowly expressed. In this article, we propose Hierarchical Grid Alignment algorithm for new methodology combining meta-gridding method with auto-gridding method. In our methodology, we necd a meta-grid as an input, and then align it with the microarray image automatically. Experimental results show that the proposed method serves more robust and reliable gridding result than the previous methods. It is also possible for user to do more reliable batch analysis by using our algorithm.