Browse > Article
http://dx.doi.org/10.12791/KSBEC.2022.31.4.416

Effects of Photoperiod and Light Intensity on the Growth and Glucosinolates Content of Three Brassicaceae Species in a Plant Factory  

Kim, Sunwoo (Department of Bio-AI Convergence, Chungnam National University)
Bok, Gwonjeong (Department of Bio-AI Convergence, Chungnam National University)
Shin, Juhyung (Department of Bio-AI Convergence, Chungnam National University)
Park, Jongseok (Department of Horticultural Science, Chungnam National University)
Publication Information
Journal of Bio-Environment Control / v.31, no.4, 2022 , pp. 416-422 More about this Journal
Abstract
This study was conducted to investigate the effect of each light intensity and photoperiod combination on the growth and glucosinolates (GSLs) content of three species of Brassicaceae plants under the same daily light integral (DLI) conditions. Seeds of leaf mustard (Brassica juncea (L.) Czern.), red mustard(Brassica juncea L.) and kale (Brassica oleracea L. var. acephala (DC.) Alef.) were sown in a rockwool cubes and grown for three weeks. DLI was set to 10 mol·m-2·d-1 and treated with 10h-280, 14h-200, 18h-155, 22h-127 µmol·m-2·s-1 for three weeks. As a result at 14h-200 µmol·m-2·s-1 treatment, shoot fresh/dry weight, the number of leaves, and leaf area were increased in leaf mustard and kale but there was no significant difference in other treatments. In the total GSLs content, the treatment of 14h-200 µmol·m-2·s-1 increased significantly 139.95, 135.87, 154.03% compared to 10h-280, 18h-155, 22h-127 µmol·m-2·s-1 treatment in red mustard, and 14h-200 µmol·m-2·s-1 treatment increased significantly 132.96, 132.96, 134.03% compared to other treatments in kale. In red mustard, the treatment of 18h-155 µmol·m-2·s-1 showed an increase in shoot fresh/dry weight and the total GSLs contents than other photoperiods and 14h-200 µmol·m-2·s-1 treatment, the number of leaves significantly 15.62, 12.12, and 32.14% higher than other photoperiods. Since the DLI response is different depending on species even for similar Brassicaceae crops, it is necessary to get more detailed results by conducting optical light quality studies and deriving optimal DLI conditions to achieve minimum power consumption and maximum efficiency.
Keywords
DLI; glucosinolates; kale; leaf mustard; red mustard;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Abidi F., T. Girault, O. Douillet, G. Guillemain, G. Sintes, M. Laffaire, H.B. Ahmed, S. Smiti, L. Huche-Thelier, and N. Leduc 2013, Blue light effects on rose photosynthesis and photomorp hogenesis. Plant Biol 15:67-74. doi:10.1111/j.1438-8677.2012.00603.x   DOI
2 Moon M.O., J.H. Tho, C.H. Kim, C.S. Kim, and M.H. Kim 2006, Unrecorded species from Korean flora: Maesa japonica (Thunb.) Moritzi & Zoll. [Maesaceae] and Cardamine tanakae Franch. & Sav. [Brassicaceae]. Korean J Plant Taxon 36:153-161. (in Korean)   DOI
3 Palmer S., and M.W. van Iersel 2020, Increasing growth of lettuce and mizuna under sole-source LED lighting using longer photoperiods with the same daily light integral. Agronomy 10:1659. doi:10.3390/agronomy10111659   DOI
4 Su B., Y. Song, C. Song, L. Cui, T. Yong, and W. Yang 2014, Growth and photosynthetic responses of soybean seedlings to maize shading in relay intercropping system in Southwest China. Photosynthetica 52:332-340. doi:10.1007/s11099-014-0036-7   DOI
5 Yan Z., D. He, G. Niu, Q. Zhou, and Y. Qu 2019, Growth, nutritional quality, and energy use efficiency of hydroponic lettuce as influenced by daily light integrals exposed to white versus white plus red light-emitting diodes. HortScience 54:1737-1744. doi:10.21273/HORTSCI14236-19   DOI
6 Gao W., D. He, F. Ji, S. Zhang, and J. Zheng 2020, Effects of daily light integral and LED spectrum on growth and nutritional quality of hydroponic spinach. Agronomy. 10:1082. doi:10.3390/agronomy10081082   DOI
7 Zhang Y., S. Xu, Y. Cheng, Z. Peng, and J. Han 2018b, Transcriptome profiling of anthocyanin-related genes reveals effects of light intensity on anthocyanin biosynthesis in red leaf lettuce. PeerJ 6:e4607. doi:10.7717/peerj.4607   DOI
8 Dou H., and G. Niu 2020, Plant responses to light. In T Kozai, G Niu, M Takagaki, eds., Plant Factory, 2nd Ed. Academic Press, pp 153-166. doi:10.1016/B978-0-12-816691-8.00009-1   DOI
9 Falk K.L., J.G. Tokuhisa, and J. Gershenzon 2007, The effect of sulfur nutrition on plant glucosinolate content: Physiology and molecular mechanisms. Plant Biol 9:573-581. doi:10.1055/s-2007-965431   DOI
10 Amina H., M. Ahmad, G.R. Bhatti, M. Zafar, S. Sultana, M.A. Butt, S. Bahadur, I.U. Haq, M.A. Ghufran, and S. Ahmad 2020, Microscopic investigation of pollen morphology of Brassicaceae from Central Punjab-Pakistan. Microsc Res Tech 83:446-454. doi:10.1002/jemt.23432   DOI
11 Huseby S., A. Koprivova, B.-R. Lee, S. Saha, R. Mithen, A.-B. Wold, G.B. Bengtsson, and S. Kopriva 2013, Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis. J Exp Bot 64:1039-1048. doi: 10.1093/jxb/ers378   DOI
12 Jin W., D. Formiga Lopez, E. Heuvelink, and L.F.M. Marcelis 2022, Light use efficiency of lettuce cultivation in vertical farms compared with greenhouse and field. Food Energy Secur e391. doi:10.1002/fes3.391   DOI
13 Kelly N., D. Choe, Q. Meng, and E.S. Runkle 2020, Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Sci Hortic 272:109565. doi:10.1016/j.scienta.2020.109565   DOI
14 Lam V.P., J. Choi, and J. Park 2021, Enhancing growth and glucosinolate accumulation in watercress (Nasturtium officinale L.) by regulating light intensity and photoperiod in plant factories. Agriculture 11:723. doi:10.3390/agriculture11080723   DOI
15 Jeong N.R., J.H. Chun, E.J. Park, Y.H. Lim, and S.J. Kim 2015, Variations of glucosinolates in kale leaves (Brassica oleracea var. acephala) treated with drought-stress in autumn and spring seasons. Korean J Agric Sci 42:167-175. (in Korean) doi:10.7744/cnujas.2015.42.3.167   DOI
16 Engelen-Eigles G., G. Holden, J.D. Cohen, and G. Gardner 2006, The effect of temperature, photoperiod, and light quality on gluconasturtiin concentration in watercress (Nasturtium officinale R. Br.). J Agric Food Chem 54:328-334. doi:10.1021/jf051857o   DOI
17 Feng L., M.A. Raza, Z. Li, Y. Chen, M.H.B. Khalid, J. Du, W. Liu, X. Wu, C. Song, and L. Yu 2019, The influence of light intensity and leaf movement on photosynthesis characteristics and carbon balance of soybean. Front Plant Sci 9:1952. doi:10.3389/fpls.2018.01952   DOI
18 Huang J.J., C. D'Souza, M.Q. Tan, and W. Zhou 2021, Light intensity plays contrasting roles in regulating metabolite compositions in choy sum (Brassica rapa var. parachinensis). J Agric Food Chem 69:5318-5331. doi:10.1021/acs.jafc.1c00155   DOI
19 Lee G.G., H.J. Kim, S.J. Kim, J.W. Lee, and J.S. Park 2016, Increased growth by LED and accumulation of functional materials by florescence lamps in a hydroponics culture system for Angelica gigas. J Bio-Env Con 25:42-48. (in Korean) doi:10.12791/KSBEC.2016.25.1.42   DOI
20 Zhang X., D. He, G. Niu, Z. Yan and J. Song 2018a, Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int JAgric Biol Eng 11:33-40. doi:10.25165/j.ijabe.20181102.3420   DOI
21 Xu W., N. Lu, M. Kikuchi, and M. Takagaki 2021, Continuous lighting and high daily light integral enhance yield and quality of mass-produced nasturtium (Tropaeolum majus L.) in plant factories. Plants 10:1203. doi:10.3390/plants10061203   DOI
22 Solovchenko A.E., I. Khozin-Goldberg, S. Didi-Cohen, Z. Cohen, and M. Merzlyak 2008, Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J Appl Phycol 20:245-251. doi:10.1007/s10811-007-9233-0   DOI
23 Lee J.Y., S.R. Min, J.E. Jung, and H.R. Kim 2019, Effect of methyl jasmonate on the glucosinolate contents and whole genome expression in Brassica oleracea. J Plant Biotechnol 46:189-204. (in Korean) doi:10.5010/JPB.2019.46.3.189   DOI
24 Mawlong I., M.S. Sujith Kumar, B. Gurung, K.H. Singh, and D. Singh 2017, A simple spectrophotometric method for estimating total glucosinolates in mustard de-oiled cake. Int J Food Prop 20:3274-3281. doi:10.1080/10942912.2017.1286353   DOI
25 Mao H., T. Hang, X. Zhang, and N. Lu 2019, Both multi-segment light intensity and extended photoperiod lighting strategies, with the same daily light integral, promoted Lactuca sativa L. growth and photosynthesis. Agronomy 9:857. doi:10.3390/agronomy9120857   DOI
26 Miekus N., K. Marszalek, M. Podlacha, A. Iqbal, C. Puchalski, and A.H. Swiergiel 2020, Health benefits of plant-derived sulfur compounds, glucosinolates, and organosulfur compounds. Molecules 25:3804. doi:10.3390/molecules25173804   DOI
27 Nawaz H., M.A. Shad, and S. Muzaffar 2018, Phytochemical composition and antioxidant potential of Brassica. Brassica Germplasm Charact Breed Util 1:7-26. doi:10.5772/intechopen.76120   DOI
28 Zhang T., R. Liu, J. Zheng, Z. Wang, T.e. Gao, M. Qin, X. Hu, Y. Wang, S. Yang, and T. Li 2022, Insights into glucosinolate accumulation and metabolic pathways in Isatis indigotica Fort. BMC Plant Biol 22:1-20. doi:10.1186/s12870-022-03455-6   DOI
29 Kim H.E., and K.B. Chin 2018, Antioxidant activities of brussels sprouts powder and its application to pork patties on the physicochemical properties and antioxidant activity during refrigerated storage. J Korean Soc Food Sci Nutr 47:733-741. (in Korean) doi:10.3746/jkfn.2018.47.7.733   DOI