• Title/Summary/Keyword: 최적화 알고리즘

Search Result 3,573, Processing Time 0.035 seconds

Internetworking strategy between MANET and WLAN for Extending Hot-Spot of WLAN based on HMIPv6 (HMIPv6를 기반으로 한 무선 랜과 이동 애드 혹 네트워크 간의 인터네트워킹 기법)

  • Lee Hyewon K.;Mun Youngsong
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.1
    • /
    • pp.38-48
    • /
    • 2006
  • For extending of hot-spot of WLAN, (2) proposes internetworking scheme between wireless LAN (WLAN) and mobile ad-hoc network (MANET), which employ the same layer-2 protocol with different mode. Compared to internetworking schemes between UMTS (Universal Mobile Telecommunications Systems) and WLAN (3-4), the scheme from (2) has relatively low overhead and latencies because WLAN and MANET are physically and logically similar to each other. However, the mode switching algorithm proposed in r2] for internetworking between WLAN and MANET only considers signal strength and determines handoff, and mobile nodes following a zigzag course in pollution area may perform handoff at short intervals. Furthermore, (2) employs mobile IPv6 (MIPv6) at base, which brings still high delay on handoff and overhead due to signal message exchange. In this paper, we present optimized internetworking scheme between WLAN and MANET, modified from (2). To settle ping-pong handoff from (2), we propose adaptive mode switching algorithm. HMIPv6 is employed for IP connectivity and mobility service in WLAN, which solves some shortcomings, such as high handoff overhead and vulnerable security. For routing in MANET, OLSR is employed, which is a proactive Protocol and has optimally reduced signal broadcasting overhead. OLSR operates with current P protocol compatibly with no change or modification. The proposed internetworking scheme based on adaptive mode switching algorithm shows better performance than scheme from (2).

Extracting Typical Group Preferences through User-Item Optimization and User Profiles in Collaborative Filtering System (사용자-상품 행렬의 최적화와 협력적 사용자 프로파일을 이용한 그룹의 대표 선호도 추출)

  • Ko Su-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.581-591
    • /
    • 2005
  • Collaborative filtering systems have problems involving sparsity and the provision of recommendations by making correlations between only two users' preferences. These systems recommend items based only on the preferences without taking in to account the contents of the items. As a result, the accuracy of recommendations depends on the data from user-rated items. When users rate items, it can be expected that not all users ran do so earnestly. This brings down the accuracy of recommendations. This paper proposes a collaborative recommendation method for extracting typical group preferences using user-item matrix optimization and user profiles in collaborative tittering systems. The method excludes unproven users by using entropy based on data from user-rated items and groups users into clusters after generating user profiles, and then extracts typical group preferences. The proposed method generates collaborative user profiles by using association word mining to reflect contents as well as preferences of items and groups users into clusters based on the profiles by using the vector space model and the K-means algorithm. To compensate for the shortcoming of providing recommendations using correlations between only two user preferences, the proposed method extracts typical preferences of groups using the entropy theory The typical preferences are extracted by combining user entropies with item preferences. The recommender system using typical group preferences solves the problem caused by recommendations based on preferences rated incorrectly by users and reduces time for retrieving the most similar users in groups.

Optimized Handoff Scheme with Fuzzy logic in Heterogeneous Vehicular Mobile Networks (이종의 차량 모바일 네트워크에서 퍼지 로직을 이용한 최적의 핸드오프 기법)

  • Roh, Youngsam;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.1
    • /
    • pp.35-46
    • /
    • 2012
  • The development of wireless communication systems has resulted in the availability of several access technologies at any geographic area, such as 3G networks, wireless local area networks (WLANs) and wireless broadband networks. The development of these technologies is provided for users who have experienced mobile network environments which are slow or fast-movement environment and change distance between the AP(Access Point). This paper describes network performance issues in various environmental changes. Also, Fuzzy logic is applied to evaluate the performance in vehicle networks around users' environmental factors to focusing on the minimizing of transfer time and costs. First, WLAN and 3G networks fixed distance between AP, Second, WLAN and 3G networks random distance between APs, finally above two environmental with vehicle Ad hoc networks is analyzed. These V2I and V2V environmental condition are assumed. Results which based on Fuzzy logic suggest an optimal performance in vehicle network environments according to vehicle speed and distance between APs. Proposed algorithm shows 21% and 13% improvement of networks performance in V2I and V2V environment.

Improvement on L-THIA ACN-WQ model for expanded application to the watersheds (유역 확대 적용을 위한 L-THIA ACN-WQ 모형의 개선)

  • Kum, Donghyuk;Park, Youn Shik;Ryu, Jichul;Jeon, Ji-Hong;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.315-315
    • /
    • 2018
  • L-THIA ACN-WQ 2016 모형 개선 연구에서는 침투량 산정, 다중 기상지점 등 유역 규모 확대를 목적으로 엔진 개선과 모형의 최적 매개변수 선정을 위해 최적화 알고리즘을 활용한 자동보정 모듈을 개발하였다. 개선된 침투량 초기손실 산정 계수를 적용한 침투량 산정 방법을 Green-Ampt 모형의 침투량 산정 결과와 비교한 결과 편차는 매우 작았으며, Green-Ampt 모형을 통해 산정된 침투량 범위 내에 분포되어 개선된 침투량 산정 방법의 결과가 유효한 값을 의미하는 것으로 나타났다. 이렇게 도출된 초기손실 산정 계수를 관계식으로 개발하여 L-THIA ACN-WQ 2018 모형 내에서 CN에 따른 초기손실량이 산정되도록 하였고, 이를 기반으로 침투량 및 기저유출량이 산정된다. 유역 규모 확대를 위해 다중 기상지점이 적용되도록 엔진 코드를 개선하였으며, 평창A와 고부A 유역을 대상으로 단일 기상지점과 다중 기상지점 적용에 따른 유출 해석을 유량지속곡선을 통해 비교 한 결과 다중 기상지점 적용에 따라서 평창A와 고부A 유역 모두 유황구간이 크게 달라지는 것으로 나타났다. 특히 고부A 유역은 우황 변동 특성이 크게 나타났는데, 지역적 강우 특성이 뚜렷한 유역에서는 유출해석에 매우 중요한 영향인자로 작용되는 것으로 알 수 있었다. 마지막으로 L-THIA ACN-WQ 2018모형을 이용함에 있어 유역 특성에 알맞은 최적 매개변수 산정을 위해 유량 및 TN, TP 자동보정 툴을 개발하였다. 자동보정툴은 2개의 보정방안으로 개발하였다. 첫 번째는 유역 전체에 대해 하나의 최적매개변수를 도출하는 것이며, 두번째는 유역 내 다중 보정 지점을 통해 소유역별 최적매개변수를 도출하는 것이다. 이를 통해 사용자는 모형의 활용 목적 및 가용 가능한 보정 자료 등을 고려하여 모형의 최적 매개변수를 도출할 수 있다. 이렇게 개선된 L-THIA ACN-WQ 2018 모형을 총량단위유역 한강 평창A와 금강 고부A에 적용한 결과 유량은 NSE 0.76, 0.85로 매우 높게 나타났으며, TN, TP의 NSE는 0.64 ~ 0.86 로 매우 높은 적용성 결과가 도출되었다. Ryu(2016)의 연구 결과와 비교해보면 평창A는 NSE와 $R^2$ 수치로는 큰 차이를 보이지 않았지만, 유량 모의에서 일별 예측값 변화 폭에 큰 변화가 있는 것으로 나타났다. 기존 L-THIA ACN-WQ 2016모형 결과에서는 일별 유량의 변동성이 매우 크지만, L-THIA ACN-WQ 2018 모형에서는 일별 유량 변동폭이 크게 감소하여, 유량 모의에 큰 개선 효과가 있는 것으로 나타났다

  • PDF

Development of weekly rainfall-runoff model for drought outlooks (가뭄전망을 위한 주간 강우-유출 모형의 개발 및 적용)

  • Kang, Shinuk;Chun, Gunil;Nam, Woosung;Park, Jinhyeog
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.214-214
    • /
    • 2019
  • 가뭄이 '심함' 단계 이상 도달 시에는 매주 수문분석을 수행하여 가뭄전망을 수행하여야 한다. 이를 위해서는 기상청의 강수량과 기온 등의 기상예측 자료가 필요하다. 현재 기상청에서는 3개월 기상전망으로 월단위 강수량과 평균기온을 매월 제공하고 있다. 1개월 전망에서 4주의 강수량합과 평균기온을 제공하고 있다. 하지만, 향후 4주간을 전망하는 1개월 전망에서는 1주단위의 강수량과 평균기온이 아닌, 4주간의 강수량합과 평균기온을 1주일 단위로 업데이트해 WINS에 제공하고 있다. 1주단위의 강수량과 평균기온을 취득하기 어려워, 평년 일단위 강수량과 평균기온 자료를 사용하여 4주간의 자료를 1주 단위로 분할하는 방법을 사용하였다. 주간단위 수문자료의 처리를 위해 국제표준기구(ISO)에서 제시하는 기준(ISO 8601)에 따랐다. ISO 8601은 월요일부터 일요일까지를 1주로 정의하며 현재 사용하고 있는 날짜체계와 1대1로 대응되도록 하였다. 예를 들면 1981년 2월 22일은 '1981-W07-7' 또는 '1981W077'로 표시한다. 표시된 형식은 1981년 7번째 주 일요일을 뜻한다. 이 기준에 따라 수문자료를 정리할 수 있도록 프로그램을 개발하였다. 주간 단위 잠재증발산량 계산은 월잠재증발산량 프로그램을 1주단위로 계산할 수 있도록 수정 및 보완하여 개발하였다. 수정 및 보완한 부분은 외기복사(外氣輻射)량 계산부분이다. 외기복사량은 지구가 태양을 1년 주기로 공전하므로 특정 위도에서 특정날짜에 따라 복사량이 달라지므로 주간단위의 월요일부터 일요일에 해당하는 날짜의 외기복사량을 각각 계산하고 이를 평균하여 주간단위 대푯값으로 사용하도록 하였다. 계산된 주간단위 외기복사량과 최고 최저기온을 입력하여 Hargreaves식에 의해 잠재증발산량을 계산한다. 융적설을 포함한 주단위 강우-유출 모형의 매개변수를 추정하기 위해 전국 24개 지점의 수문자료를 사용하였다. abcd 모형과 융적설모듈의 초기값 포함 11개 매개변수를 SCE-UA 전역최적화 알고리즘으로 추정하였다. 추정된 유역의 매개변수는 토양배수, 토양심도, 수문지질, 유역특성인자를 사용한 군집분석 결과에 의해 113개 중권역에 할당하였다. 개발된 주간단위 강우-유출 모형은 비교적 단기 가뭄전망을 위해 사용된다. 계산된 유량은 자연유량이며, 전국 취수장 수량, 하수처리장 방류수, 회귀수를 반영하여 지점별 유량을 계산하여 가뭄전망에 사용되고 있다.

  • PDF

A Study on the Efficiency of Join Operation On Stream Data Using Sliding Windows (스트림 데이터에서 슬라이딩 윈도우를 사용한 조인 연산의 효율에 관한 연구)

  • Yang, Young-Hyoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.149-157
    • /
    • 2012
  • In this thesis, the problem of computing approximate answers to continuous sliding-window joins over data streams when the available memory may be insufficient to keep the entire join state. One approximation scenario is to provide a maximum subset of the result, with the objective of losing as few result tuples as possible. An alternative scenario is to provide a random sample of the join result, e.g., if the output of the join is being aggregated. It is shown formally that neither approximation can be addressed effectively for a sliding-window join of arbitrary input streams. Previous work has addressed only the maximum-subset problem, and has implicitly used a frequency based model of stream arrival. There exists a sampling problem for this model. More importantly, it is shown that a broad class of applications for which an age-based model of stream arrival is more appropriate, and both approximation scenarios under this new model are addressed. Finally, for the case of multiple joins being executed with an overall memory constraint, an algorithm for memory allocation across the join that optimizes a combined measure of approximation in all scenarios considered is provided.

A Study on Smart Ground Resistance Measurement Technology Based on Aduino (아두이노 기반 IT융합 스마트 대지저항 측정 기술 연구)

  • Kim, Hong Yong
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.684-693
    • /
    • 2021
  • Purpose: The purpose is to establish a safe facility environment from abnormal voltages such as lightning by developing a smart land resistance measuring device that can acquire real-time land resistance data using Arduino. Method: This paper studied design models and application cases by developing a land resistance acquisition and analysis system with Arduino and a power line communication (PLC) system. Some sites in the wind power generation complex in Gyeongsangnam-do were selected as test beds, and real-time land resistance data applied with new technologies were obtained. The electrode arrangement adopted a smart electrode arrangement using a combination of a Wenner four electrode arrangement and a Schlumberger electrode arrangement. Result: First, the characteristic of this technology is that the depth of smart multi-electrodes is organized differently to reduce the error range of the acquired data even in the stratigraphic structure with specificity between floors. Second, IT convergence technology was applied to enable real-time transmission and reception of information on land resistance data acquired from smart ground electrodes through the Internet of Things. Finally, it is possible to establish a regular management system and analyze big data accumulated in the server to check the trend of changes in various elements, and to model the optimal ground algorithm and ground system design for the IT convergence environment. Conclusion: This technology will reduce surge damage caused by lightning on urban infrastructure underlying the 4th industrial era and design an optimized ground system model to protect the safety and life of users. It is also expected to secure intellectual property rights of pure domestic technology to create jobs and revitalize our industry, which has been stagnant as a pandemic in the post-COVID-19 era.

The Impact of Spatio-temporal Resolution of GEO-KOMPSAT-2A Rapid Scan Imagery on the Retrieval of Mesoscale Atmospheric Motion Vector (천리안위성 2A호 고속 관측 영상의 시·공간 해상도가 중규모 대기운동벡터 산출에 미치는 영향 분석)

  • Kim, Hee-Ae;Chung, Sung-Rae;Oh, Soo Min;Lee, Byung-Il;Shin, In-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.885-901
    • /
    • 2021
  • This paper illustratesthe impact of the temporal gap between satellite images and targetsize in mesoscale atmospheric motion vector (AMV) algorithm. A test has been performed using GEO-KOMPSAT-2A (GK2A) rapid-scan data sets with a temporal gap varying between 2 and 10 minutes and a targetsize between 8×8 and 40×40. Resultsshow the variation of the number of AMVs produced, mean AMV speed, and validation scores as a function of temporal gap and target size. As a results, it was confirmed that the change in the number of vectors and the normalized root-mean squared vector difference (NRMSVD) became more pronounced when smaller targets are used. In addition, it was advantageous to use shorter temporal gap and smaller target size for the AMV calculation in the lower layer, where the average speed is low and the spatio-temporal scale of atmospheric phenomena is small. The temporal gap and the targetsize are closely related to the spatial and temporalscale of the atmospheric circulation to be observed with AMVs. Thus, selecting the target size and temporal gap for an optimum calculation of AMVsrequires considering them. This paper recommendsthat the optimized configuration to be used operationally for the near-real time analysis of mesoscale meteorological phenomena is 4-min temporal gap and 16×16 pixel target size, respectively.

Prediction of Traffic Congestion in Seoul by Deep Neural Network (심층인공신경망(DNN)과 다각도 상황 정보 기반의 서울시 도로 링크별 교통 혼잡도 예측)

  • Kim, Dong Hyun;Hwang, Kee Yeon;Yoon, Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.44-57
    • /
    • 2019
  • Various studies have been conducted to solve traffic congestions in many metropolitan cities through accurate traffic flow prediction. Most studies are based on the assumption that past traffic patterns repeat in the future. Models based on such an assumption fall short in case irregular traffic patterns abruptly occur. Instead, the approaches such as predicting traffic pattern through big data analytics and artificial intelligence have emerged. Specifically, deep learning algorithms such as RNN have been prevalent for tackling the problems of predicting temporal traffic flow as a time series. However, these algorithms do not perform well in terms of long-term prediction. In this paper, we take into account various external factors that may affect the traffic flows. We model the correlation between the multi-dimensional context information with temporal traffic speed pattern using deep neural networks. Our model trained with the traffic data from TOPIS system by Seoul, Korea can predict traffic speed on a specific date with the accuracy reaching nearly 90%. We expect that the accuracy can be improved further by taking into account additional factors such as accidents and constructions for the prediction.

Particle Swarm Optimization-Based Peak Shaving Scheme Using ESS for Reducing Electricity Tariff (전기요금 절감용 ESS를 활용한 Particle Swarm Optimization 기반 Peak Shaving 제어 방법)

  • Park, Myoung Woo;Kang, Moses;Yun, YongWoon;Hong, Seonri;BAE, KUK YEOL;Baek, Jongbok
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.388-398
    • /
    • 2021
  • This paper proposes a particle swarm optimization (PSO)-based peak shaving scheme using energy storage system (ESS) for electricity tariff reduction. The proposed scheme compares the actual load with the estimated load consumption, calculates the additional output power that the ESS needs to discharge additionally to reduce peak load, and adds the input. In addition, in order to compensate for the additional power, the process of allocating power to the determined point is performed, and an optimization that minimizes the average of the load expected at the active power allocations using PSO so that the allocated value does not affect the peak load. To investigated the performance of the proposed scheme, case study of small and large load prediction errors was conducted by reflecting actual load data and load prediction algorithm. As a result, when the proposed scheme is performed with the ESS charge and discharge control to reduce electricity tariff, even when the load prediction error is large, the peak load is successfully reduced, and the peak load reduction effect of 17.8% and electricity tariff reduction effect of 6.02% is shown.