• Title/Summary/Keyword: 최적혼합률

Search Result 95, Processing Time 0.024 seconds

Optimum Chemical Cleaning Conditions for Ceramic Microfiltration Membrane Process (세라믹 정밀여과막 공정을 위한 최적 약품세척 방안)

  • Lim, Jae-Lim;Lee, Kyung-Hyuk;Lee, Young-Joo;Park, Jong-Yul
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.461-469
    • /
    • 2012
  • This study was carried out to find the optimum chemical cleaning (CIP) conditions for ceramic microfiltration membrane process of Y drinking water treatment plant. B train consists of coagulation as pretreatment process with membrane was chemically cleaned 9 times more than that of A train with ozonation and coagulation. The frequent CIP of B train was due to improper CIP method suggested by membrane manufacture as well as different membrane fouling between A and B train resulting from the different pretreatment processes. That is, recovery rate of CIP was overestimated because the rate was calculated based on normalized trans membrane pressure (TMP) rather than normalized permeability. And also, iron oxide fouling was ineffectively removed by citric acid. By using a mixture of 1% citric acid and 0.1 N sulfuric acid as reagent for acid CIP step, the recovery rate of CIP was the highest while CIP efficiency by 0.1 N sulfuric acid was the lowest. When sulfuric acid concentration increased from 0.1 N to 0.3 N in mixture, total recovery rate of CIP was not increased due to the decreased CIP efficiency in alkali CIP step by 0.3% NaOCl although its rate in acid CIP step was increased. It was proved through the experiment result of CIP sequence changes that an acid followed by alkali CIP was more effective than that of the reverse method.

Optimum Condition of the Coir-Based Substrate for Growth of Red Pepper (Capsicum annuum L.) Plug Seedlings (코이어 혼합상토를 이용한 고추 육묘용 최적 상토개발)

  • Lee, Hyun-Haeng;Ha, Sang-Keon;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.369-376
    • /
    • 2007
  • This experiment was carried out to investigate optimum conditions of coir-based substrates for the red pepper plug seedlings. Eleven different coir based substrates prepared by mixing of coir, vermiculite, rice hull, perlite, zeolite, mixed at different ratios were tested. The physical and chemical properties of the substrates were analyzed by the CEN (European committee for standardization) method. Fresh and dry weights of shoot and root, leaf area, root length, and T/R ratio (dry shoot weight/dry root weight) were determined at 55 days after sowing. The results showed that the growing media CRZ 8(coir:rice hull: vermiculite=8:1.9:0.1) and CVSZ 6(coir:silver vermiculite: zeolite=6:3.9:0.1) can successfully be used for pepper plug seedlings judging from dry weight and T/R ratio of the plug seedlings. The optimal range of total pore space, water volume, air volume, easily available water content and water buffering capacity of the coir-based growing substrates for pepper plug seedlings were in the range of 92~94%, 52~60%, 32~43%, 18~21%, and 0.9~8%, respectively.

Optimization of the Backfill Materials for Underground Power Cables considering Thermal Resistivity Characteristics (I) (열저항 특성을 고려한 지중송전관로 되메움재의 최적화(I))

  • Kim, You-Seong;Cho, Dae-Seong;Park, Young-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.113-121
    • /
    • 2011
  • River sand has generally used for the backfill material of underground power cables. The thermal resistivity of it has $150^{\circ}C$-cm/Watt in wet condition and more than double in dry condition. The final goal of this study is to find the backfill material which has a small change in thermal resistivity with various water contents, for example thermal resistivity is $50^{\circ}C$-cm/Watt and $100^{\circ}C$-cm/Watt in wet and dry conditions respectively. In this study it is presented that the comparison of thermal resistivity using stone powder, crush rock, weathered granite soil and Jumunjin sand as well as river sand in the needle method regarding water content, dry unit weight and particle size distribution. As a result, the thermal resistivity of a material is minimized when they have maximum dry unit weight at optimum moisture content and maximum density by appropriately mixing materials for particle size distribution. Therefore thermal resistivity characteristics should be considered two factors: one is the difference between natural dry condition and dry state after optimum moisture content, and the other is the difference between unit weight of raw material and maximum dry density.

Improved Compressive·Flexural Performance of Hybrid Fiber-Reinforced Mortar Using Steel and Carbon Fibers (강 및 탄소 섬유를 사용한 하이브리드 섬유보강 모르타르의 압축·휨성능 향상)

  • Heo, Gwang-Hee;Park, Jong-Gun;Seo, Dong-Ju;Koh, Sung-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.48-59
    • /
    • 2021
  • In this study, experiments were conducted to investigate the compressive·flexural performances of single fiber-reinforced mortar (FRM) using only steel fiber or carbon fiber which has different material properties as well as hybrid FRM using a mixture of steel and carbon fibers. The mortar specimens incorporated steel and carbon fibers in the mix proportions of 1+0%, 0.75+0.25%, 0.5+0.5%, 0.25+0.75% and 0+1% by volume at a total volume fraction of 1.0%. Their mechanical performance was compared and examined with a plain mortar without fiber at 28 days of age. The experiments of mortar showed that the hybrid FRM using a mixture of 0.75% steel fibers + 0.25% carbon fibers had the highest compressive and flexural strength, confirming by thus the synergistic reinforcing effect of the hybrid FRM. On the contrast, in the case of hybrid FRM using a mixture of 0.5% steel fibers + 0.5% carbon fibers witnessed the highest flexural toughness, suggesting as a result the optimal fiber mixing ratio of hybrid FRM to improve the strength and flexural toughness at the same time. Moreover, the fracture surface was observed through a scanning electron microscope (SEM) for image analysis of the FRM specimen. These results were of great help for images analysis of hybrid reinforcing fibers in cement matrix.

Optimization of artificial cultivation of Tremella fuciformis in closed culture bottle (흰목이버섯 대량생산을 위한 용기내 재배 최적화 연구)

  • Choi, Sung Woo;Chang, Hyun-You;Yoon, Jeong Weon;Lee, Chan
    • Journal of Mushroom
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • The stromatal forms of T. fuciformis and the mycelia of Hypoxylon sp. were collected. The DNA sequence in the ITS region of the 5.8S ribosomal genes of isolated strain KG103 was very similar to that of T. fuciformis AF042409 with a homology of over 98% in the EMBL/GenBank database through BLAST searching. A second isolate, No KG201, one of the symbiotic strains for cultivating T. fuciformis also exhibited high homology with Annulohhypoxylon stygium AJ390406. Potato Dextrose Medium exhibited the best mycelial growth of 14 mm/14 days and 85 mm/14 days for T. fuciformis and its symbiotic fungi, respectively. Optimum culture conditions for the micelial growth were pH 5 at $25^{\circ}C$. For the optimization of artificial cultivation of T. fuciformis in bottle with sawdust medium, several conditions such as type of sawdust, supplements, pH, moisture content, and incubation temperature were investigated. T. fuciformis and symbiotic fungi showed fast mycelial growth on corn cob media (77 and 52%) followed by oak tree sawdust and cotton seed meal. The optimal temperature for mycelial growth of T. fuciformis and symbiotic fungi on corn cob media was $25^{\circ}C$ at 55% of moisture content.

  • PDF

Comparison of Critical Tractive Forces for Application of Soil Improvement Material to Bank Revetment Work (호안 제방사면 보강을 위한 지반개량재의 한계소류력 비교)

  • Kim, You-Seong;Kim, Jae-Hong;Seo, Se-Gwan;Bhang, In-Hwang
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.2
    • /
    • pp.65-73
    • /
    • 2015
  • The bank revetment work which is conducted on the slope of river bank to protect against flowing water as a geotechnical structure has been applied as an average value of critical tractive force based on domestic and international standard design. Currently, an appropriate evaluation is needed for the hydraulic stability and geotechnical behavior analysis of bank revetments because of the effects of climate change and ambiguous design criterion. This study has compared the critical tractive forces of soil improvement material and conventional materials used for the bank revetment work. Through various experiments, the shear strength of mixtures with soil improvement material was investigated by curing time and mixture ratio. It was found that the critical tractive force of the mixture obtained from a scour test is suitable to the reinforcement of the slope of river bank which has problems such as seepage erosion and scour.

A Study on Injection Moldability of a Ceramic Material (세라믹재료의 사출성형성에 대한 연구)

  • 나병철;윤재륜;오박균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.54-71
    • /
    • 1990
  • The fabrication of ceramic machine components by injection molding(CIM : Ceramic Injection Molding) is critically dependent on the shaping and binder extraction techniques. Injection molding is of keen interest to ceramic industries because CIM is suitable for making an intricate shape and manufacturing cost is lower than other process when production scale is large. The success of the molding process is dependent on the correct formulation of the organic vehicle and the achievement of optimum filler loading. Fine alumina powders and polyethylene binder systems were employed to prepare moldable blend then produce a simple specimen by compression molding. Flow characteristics of the mixture was evaluated by viscosity measurement. Optimum binder system and ceramic volume loading for injection molding were determind. A good debinding technique was utilized to improve the quality of debinded parts and save the debinding time. The simple ceramic part was successfully sintered after debinding and its microstructure examined with SEM revealed good consolidation.

Effect of pH on Hydrogen Fermentation of Food Waste with Livestock Wastewater (음식물쓰레기 수소발효 시 pH 영향 및 축산폐수와의 혼합 발효)

  • Jang, Hae-Nam
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.5-9
    • /
    • 2016
  • In the modern industrial society, huge amount of organic wastes have exceeded the society's self-cleaning capability, caused pollution of the whole environment, including water quality, soil, and the air, and become a big burden of waste treatment. Moreover, the emission of green house gases brought by the continual combustion of fossil fuels has facilitated the global warming. The simultaneous effect of initial and operational pH on $H_2$ yield was expressed using mathematical equation and optimized. The optimal initial and cultivation pH was 7.50 and 6.01, respectively. Addition of livestock wastewater to food waste substantially decreased the amount of alkali requirement and also improved the $H_2$ fermentation performance.

An Experimental Study on Multi-Document Summarization for Question Answering (질의응답을 위한 복수문서 요약에 관한 실험적 연구)

  • Choi, Sang-Hee;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.3
    • /
    • pp.289-303
    • /
    • 2004
  • This experimental study proposes a multi-document summarization method that produces optimal summaries in which users can find answers to their queries. In order to identify the most effective method for this purpose, the performance of the three summarization methods were compared. The investigated methods are sentence clustering, passage extraction through spreading activation, and clustering-passage extraction hybrid methods. The effectiveness of each summarizing method was evaluated by two criteria used to measure the accuracy and the redundancy of a summary. The passage extraction method using the sequential bnb search algorithm proved to be most effective in summarizing multiple documents with regard to summarization precision. This study proposes the passage extraction method as the optimal multi-document summarization method.

Optimization of anode and electrolyte microstructure for Solid Oxide Fuel Cells (고체산화물 연료전지 연료극 및 전해질 미세구조 최적화)

  • Noh, Jong Hyeok;Myung, Jae-ha
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.525-530
    • /
    • 2019
  • The performance and stability of solid oxide fuel cells (SOFCs) depend on the microstructure of the electrode and electrolyte. In anode, porosity and pore distribution affect the active site and fuel gas transfer. In an electrolyte, density and thickness determine the ohmic resistance. To optimizing these conditions, using costly method cannot be a suitable research plan for aiming at commercialization. To solve these drawbacks, we made high performance unit cells with low cost and highly efficient ceramic processes. We selected the NiO-YSZ cermet that is a commercial anode material and used facile methods like die pressing and dip coating process. The porosity of anode was controlled by the amount of carbon black (CB) pore former from 10 wt% to 20 wt% and final sintering temperature from $1350^{\circ}C$ to $1450^{\circ}C$. To achieve a dense thin film electrolyte, the thickness and microstructure of electrolyte were controlled by changing the YSZ loading (vol%) of the slurry from 1 vol% to 5 vol. From results, we achieved the 40% porosity that is well known as an optimum value in Ni-YSZ anode, by adding 15wt% of CB and sintering at $1350^{\circ}C$. YSZ electrolyte thickness was controllable from $2{\mu}m$ to $28{\mu}m$ and dense microstructure is formed at 3vol% of YSZ loading via dip coating process. Finally, a unit cell composed of Ni-YSZ anode with 40% porosity, YSZ electrolyte with a $22{\mu}m$ thickness and LSM-YSZ cathode had a maximum power density of $1.426Wcm^{-2}$ at $800^{\circ}C$.