• Title/Summary/Keyword: 최적배합

Search Result 620, Processing Time 0.024 seconds

Shrinkage Properties of High Performance Concrete Depending on Specimen Size and Constraint of Reinforcing Bar (공시체 크기 변화 및 철근구속에 따른 고성능콘크리트의 수축 특성)

  • Han, Cheon-Goo;Kang, Su-Tae;Koh, Kyung-Taek;Hann, Chang-Pyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.13-19
    • /
    • 2006
  • This paper reports the test results for shrinkage properties of low shrinkage high performance concrete developed by the authors depending on specimen size and constraint of reinforcing bar. As properties in fresh concrete low shrinkage high performance concrete(LSHPC) combined with expansive additives and shrinkage reducing admixture resulted in increase SP dosage due to loss of fluidity compared with that of control mixture concrete, while the dosage of AE agent was decreased. LSHPC exhibited higher compressive and tensile strength than control mixture concrete. For the effect of specimen size, an increase in specimen size led to a reduction of drying shrinkage. However, it was found that the autogenous shrinkage was not affected by the specimen size and measuring method. For constraint condition, an increase in the ratio of reinforcing bar caused the slight reduction in the strain of reinforcing bar, while it increased the autogenous shrinkage stress. It was seen that LSHPC was effective to reduce autogenous shrinkage by as much as 70% compared with control mixture high performance concrete.

Application of PBMD for High Strength Concrete Mix Proportion Design (고강도 콘크리트의 성능기반형 배합설계방법)

  • Lee, Sang-Won;Oh, Il-Sun;Lee, Hoo-Seok;Park, Sung-Hwan;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.405-406
    • /
    • 2010
  • This paper is a study about application of recently proposed Performance Based Mixture Design (PBMD) for design of high strength concrete (HSC) to obtain HSC mix proportion that satisfies required performances. Based on extensive experimental results obtained for various material and performance parameters of HSC, the application feasibility of the developed PBMD procedure for HSC has been verified. Also, the proposed PBMD procedure has been used to perform application examples to obtain desired target performances of HSC with optimum concrete mixture proportions using locally available materials, local environmental conditions, and available concrete production technologies.

  • PDF

The Fundamental Properties of Organic-Inorganic Hybrid Packaging Materials for Bike Paths using Industrial By-products (산업부산물을 이용한 유무기 복합 자전거 도로 포장재의 기초적 특성)

  • Oh, Dong-Uk;Lee, Gun-Cheol;Kim, Young-Geun;Cho, Chung-Ki;Kim, Na-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.94-101
    • /
    • 2011
  • In this study, in order to develop organic-inorganic hybrid packaging materials(PM) of bike paths using blast furnace slag(BS) as industrial by-products, fundamental properties of organic-inorganic hybrid packaging materials were performed. Test result, the increase of Acryl emulsion polymer(AEP)/binder(B) ratios tends to delay the setting time, to increase the table flow, to decrease the strength by material segregation and to increase the length change. The optimal mix proportion of AEP decides on 40%(AEP/B) due to workability and high strength. The increase of BS replacement ratios also tends to delay the setting time, to separate AEP from B and to decrease the strength by material segregation. When BS replacement ratios were lower than 40%, they are satisfied with goal properties.

  • PDF

A Study on the Mechanical Properties of Polymer Repair-Mortars with CFBC Ash (순환유동층 보일러애시를 활용한 폴리머 보수 모르타르의 역학적 특성에 대한 연구)

  • Kang, Yong Hak;Lim, Gwi Hwan;Shin, Dong Cheol;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.127-132
    • /
    • 2018
  • The amount of generated Circulating Fluidized Bed Combustion ash (CFBC ash) is annually increasing, but most CFBC ash has been landfilled and discarded due to the limited utilization. The major chemical compositions of CFBC ash are $SiO_2$, CaO and $CaSO_4$, which could form hydration products by reacting with water as self-cementing property such as cement. The purpose of the this study is to derive the optimal mix proportions to improve polymer-modified mortar with the use of CFBC ash which has the self-cementing property. In order to develop polymer-modified mortar, three mix proportions were determined, and fundamental properties for the mixtures were obtained. As a result, the optimal mixture containing 10 percent of silica fume, 1.0 percent of polymer and 3.5 percent of expansive additives were proposed in this study.

Optimum System Design of Feed Mill (배합사료 공장의 최적 시스템 설계)

  • Park, K.K.;Chung, D.S.;Behnke, K.;Hwang, C.L.
    • Journal of Biosystems Engineering
    • /
    • v.10 no.2
    • /
    • pp.55-62
    • /
    • 1985
  • 박(朴)(1982, 1983, 1984 및 1985)이 개발(開發)한 배합사료공장(配合飼料工場)의 투자비용(投資費用) 및 운전비용(運轉費用)의 수학적모형(數學的模型)을 이용(利用)하여, 배합사료공장(配合飼料工場)의 적정(適正) 시스템의 설계(設計)를 예(例)를 들어 소개하였다. 적정(適正)시스템의 설계(設計)를 위(爲)하여 비선형(非線型) 프로그램의 "Single Objective Programming Problem(단일목적함수(單一目的函數))"와 "'Multiple Objective Decision Making Method(다목적함수(多目的函數))"의 2가지 방법(方法)을 적용(適用)하였다. Single Objective Programming Problem에서는 "Generalized Reduced Gradient(GRG) Method"를 이용(利用)하였고, Multiple Objective Decision Making Method(MODM)에서는 "Interactive Nonlinear Goal Program(INGP)"를 이용(利用)하였으며 그 결과(結果)는 다음의 몇가지로 요약(要約)할 수 있다. 1. 박(朴)이 개발(閒發)한 수학적(數學的) 모형(模型)들은 2 가지 방법(方法) 모두 사료공장(飼料工場)의 최적화(最適化) 설계(設計)에 효과적으로 이용(利用)할 수가 있었다. 2. MODM방법(方法)에 의(依)하여 얻어진 최적(最適)시스템은 Single Objective Program Problem에서 구(求)한 결과(結果)보다 균형(均衡)이 있는 시스템이었으며 장래(將來)의 사료원료(飼料原料), 사료구매시장(飼料購買市場), 기타 다른 조건(條件)들의 변화)에 대(對)해서 보다 탄력(彈力)이 있는 시스템으로 나타났다. 3. 엄밀한 의미(意味)에서 절대적(絶對的)인 최적사료공장(最適飼料工場)이란 있을 수 없으며, 주위의 조건(條件), 원료가격(原料價格), 사료가격(飼料價格), 공장주(工場主)의 취향 및 설계조건등(設計條件等)에 따라 최적(最適) 시스템은 각각(各各) 다르게 나타난다.

  • PDF

Muti-Objective Design Optimization of Self-Compacting Concrete using CCD Experimental Design and Weighted Multiple Objectives Considering Cost-Effectiveness (비용효율을 고려한 자기 충전형 콘크리트의 CCD 실험설계법 및 가중 다목적성 기반 다목적설계최적화(MODO))

  • Do, Jeongyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.26-38
    • /
    • 2020
  • Mixture design of self-compacting concrete is a typical multi-criteria decision making problem and conventional mixture designs are based on the low level engineering method like trials and errors through iteration method to satisfy the various requirements. This study concerns with performing the straightforward multiobjective design optimization of economic SCC mixture considering relative importances of the various requirements and cost-effectives of SCC. Total five requirements of 28day compressive strength, filling ability, segregation stability, material cost and mass were taken into consideration to prepare the objective function to be formulated in form of the weighted-multiobjective mixture design optimization problem. Economic SCC mixture computational design can be given in a rational way which considering material costs and the relative importances of the requiremets and from the result of this study it is expected that the development of SCC mixtue computational design and the consequent univeral concrete material design optimization methodology can be advanced.

Determination of Structural Lightweight Concrete Mix Proportion for Floating Concrete Structures (콘크리트 부유구조체 적용을 위한 구조용 경량콘크리트의 최적배합비 선정)

  • Kim, Min Ook;Qian, Xudong;Lee, Myung Kue;Park, Woo-Sun;Jeong, Shin Taek;Oh, Nam Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.315-325
    • /
    • 2017
  • This study aims to provide information for the design and use of structural lightweight concrete (SLWC) for floating concrete structures in a marine environment. An experimental program was set up and comprehensive experimental campaign were carried out to determine SLWC mix proportions that can satisfy specified concrete strength, density, and slump values all of them were determined from previous research. Comparisons with previous SLWC mix designs that have been utilized for actual floating concrete structures were made. Key aspects needed to be considered regarding to the use of SLWC for floating marine concrete structures were discussed.

Optimum Mix Design of Alkali-Activated Cement Mortar Using Bottom Ash as Binder (바텀애쉬를 결합재로 사용한 알칼리 활성화 시멘트 모르타르의 최적배합에 관한 연구)

  • Kang, Su-Tae;Ryu, Gum-Sung;Koh, Kyoung-Taek;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.487-494
    • /
    • 2011
  • In this research, the possibility of using bottom ash as a binder for the alkali-activated cement mortar is studied. Several experiments were performed to investigate the variation of the material properties according to the mix proportion. In the experimental program, the flowability and compressive strength were evaluated for various values of water/ash ratio, activator/ash ratio, sodium silicate to sodium hydroxide ratio, curing temperature, and the fineness of bottom ash as the main variables. The experimental results showed that high strength of 40 MPa or greater could be achieved in $60^{\circ}C$ high temperature curing condition with proper flowability. For $20^{\circ}C$ ambient temperature curing, the 28 days compressive strength of approximately 30MPa could be obtained although the early-age strength development was very slow. Based on the results, the range of optimized mix design of bottom-ash based alkali-activated cement mortar was suggested. In addition, using the artificial neural network analysis, the flowability and compressive strength were predicted with the difference in the mix proportion of the bottom-ash based alkali-activated cement mortar.

A Study on the Optimum Mixture of Sandwich Panel Core Using Lightweight Foamed Concrete (경량기포콘크리트를 이용한 샌드위치 패널 심재의 최적배합에 관한 연구)

  • Ahn, Jung-Hyun;Chun, Woo-Young;Lee, Sang-An;Kim, Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.447-448
    • /
    • 2009
  • On this study, the concrete foaming was maximized using Hydrogen peroxide($H_2O_2$) reciprocal decomposition catalyzed by Manganese dioxide($MnO_2$) and Sodium bicarbonate($NaHCO_3$). Also, we study the physical and mechanical properties of lightweight formed concrete through diverse experiment which is to determine the optimal mixing proportion and require strength of the lightweight formed concrete. As a result of an experiment, it is satisefied with overall quality standard on the KS F 4039 and KS F 2459 provision.

  • PDF