심층 신경망은 영상 분류, 음성 인식, 그리고 문자 번역 등 다양한 분야에서 효과적인 성능을 보여주고 있다. 신경망의 구조 변화, 신경망 간의 정보 전달, 그리고 학습에 사용되는 데이터 증대 등의 확장된 연구를 통해 성능은 더욱 발전하고 있다. 그 중에서도 데이터 증대는 기존에 수집한 데이터의 변형을 통해 심층 신경망에 더 다양한 데이터를 제공함으로써 더욱 일반화된 신경망을 학습시기키는 것을 목표로 한다. 하지만 기존의 음향 관련 신경망 연구에서는 모델의 학습에 사용되는 데이터 증대 방법의 연구가 영상 처리 분야만큼 다양하게 이루어지지 않았다. 최근 영상 처리 분야의 데이터 증대 연구는 학습에 사용되는 데이터와 모델에 따라 최적의 데이터 증대 방법이 다르다는 것을 실험적으로 보여주었다. 이에 영감을 받아 본 논문은 자연에서 발생하는 음향을 분류하는데 있어서 최적의 데이터 증대 방법을 실험적으로 찾으며, 그 과정을 소개한다. 음향에 잡음 추가, 피치 변경 혹은 스펙트로그램의 일부 제한 등의 데이터 증대 방법을 다양하게 조합하는 실험을 통해 경험적으로 어떤 증대 방법이 효과적인지 탐색했다. 결과적으로 ESC-50 자연 음향 데이터 셋에 최적화된 데이터 증대 방법을 적용함으로써 분류 정확도를 89%로 향상시킬 수 있었다.
기존의 HDR (high dynamic range) 영상취득 기법은 한 장의 HDR 영상을 얻기 위해 여러 장의 LDR (low dynamic range) 영상을 취득하기 때문에 영상 취득에 많은 시간이 소요된다. 본 논문에서는 이런 단점을 보안하기 위해 두 장의 LDR 영상을 이용하여 평균 밝기 값에 대한 노출 곡선을 추정한다. 그리고 추정된 노출곡선을 이용하여 밝은 영상과 어두운 영상 각각의 최적의 노출 시간을 취득하는 기법을 제안한다.
본 논문에서는 HEVC의 화면내 모드에서 예측을 수행할 블록의 주변적 특성을 이용한 고속 모드 결정 알고리즘을 제안한다. 기존의 화면내 예측 방법으로는 33가지 방향성 예측방법과 두 가지의 무 방향성 방법을 이용하게 된다. 이때 최적의 예측 모드를 선택하기 위하여 RD cost 계산을 하게 된다. 본 논문에서는 모드 선택의 복잡성을 줄이고 고속 모드를 결정하기 위하여 예측 할 블록의 주변 중 가장 자리와 가중치 특성을 고려하였다.
본 논문에서는 블록간, 블록 내수, 수평. 수직 방향성, 그리고 시간 영역의 정보를 이용하는 압축 동영상의 블록화 및 링 현상을 제거하는 방식을 제안한다. 위의 정보를 이용하여 새로운 부가 함수가 정의되며, 최적 해를 구하기 위해 gradient와 projection을 결합시킨 hybrid 형태의 기법을 이용한다. 또한, 정규화 계수들 및 projection을 위한 영역의 설정을 부호화단에서는 이용 가능한 정보로부터 추출하게 되므로 계산량을 감소시킬 수 있다. 실험 결과로부터 제안된 방식의 효율성을 확인할 수 있다.
본 논문에서는 여러 개의 클래스가 정의되어 있을 경우에 피춰(feature)추출을 최적화 하는 방법을 제안한다. 제안된 알고리즘은 피춰를 하나씩 추출하며 그 과정마다 각 클래스의 가중치를 조정하여 최적의 해를 얻는 방법을 사용한다. 처음에는 각 클래스에 동일한 가중치를 주어 criterion function을 구하고 이로부터 첫 번째 피춰를 얻는다. 이 피춰에 의한 오류와 전체 피춰를 사용하였을 경우의 오류의 차이가 가장 큰 클래스에 더 많은 가중치를 주어 새로운 criterion function을 구하여 두 번째 피춰를 얻는다. 이 과정에서 오류는 Bhattacharyya distance에 의해 예측한다.
본 논문은 low-rank 행렬의 truncated nuclear norm 최소화를 이용한 HDR (high dynamic range) 영상 합성 기법을 제안한다. 제안하는 기법에서는 기존의 LDR (low dynamic range) 영상에서 얻은 밝기의 선형 관계에 기반하여 HDR 합성을 low-rank 행렬 완성 문제로 변환한 후, ALM (augmented Lagrange multiplier) 기법을 이용하여 효율적으로 최적의 해를 구한다. 컴퓨터 모의실험을 통해 제안하는 기법이 기존 기법에 비해서 낮은 계산 복잡도를 보이면서도 더 높은 품질의 HDR 영상을 합성하는 것을 확인한다.
본 논문에서는 비디오 코딩 잔차신호를 보다 효율적으로 변환하기 위하여 오프라인으로 잔차신호를 학습하여 RD(Rate Distortion) Cost를 기반으로 분류된 몇 가지 변환 기저들을 생성하고, 비디오 복호화 과정 중 잔차신호를 역변환을 수행할 때 주변의 복호화가 완료된 신호들을 이용하여 최적의 변환 기저를 선택하여 해당 변환 기저로 역변환을 수행하여 효율적으로 잔차신호를 압축하는 방법에 대해 제안한다. 변환 기저 생성에는 분류된 잔차신호들에 대하여 2 차원 혹은 1 차원 KLT를 계산함으로써 얻어내어진다. 제안하는 방법은 VTM(VVC Test Model) version 10에서 실험하였으며 약 0.5% 정도의 성능향상을 보인다.
HDTV로 전환되면서 방송국에서는 4:3의 SDTV와 16:9의 HDTV가 동시 방송되는 과도기를 맞고 있다. 유럽에서 채택한 DTV 표준인 DVB 방식인 경우 MPEG에 화면 비 정보와 AFD 정보를 신호에 실어 수신 장치에서 화변 비 정보를 알 수 있도록 하고 있다. 이 정보를 이용하여 방송에 따라 화면 비를 설정하고 최적의 화면 비율 상태로 시청할 수 있는 모드를 제공하도록 소프트웨어로 구현하고자 한다.
비대칭 통신환경에서는 서버가 사용자에게 데이터를 전송하는 방법으로 데이터 방송을 사용한다. 이 방법은 서버에서 사용자에게 필요한 모든 데이터를 주기적으로 반복해서 전송하고 사용자는 필요한 데이터가 방송되면 그 데이터를 사용한다. 그러므로 사용자는 필요한 데이터가 방송될 때까지 기다려야한다. 이러한 사용자의 대기시간은 줄여야만 한다. 대기시간을 줄이기 위하여 서버에서는 각각의 데이터의 순서를 스케줄링하여 방송해야 한다. 본 논문에서는 사용자가 각각의 데이터를 요청할 확률, 데이터의 크기와 데이터의 최적주기를 이용하여 데이터를 스케줄링하는 방법을 제안하고 이 방법들의 효용성을 검증했다. 이를 위해 제안한 방법으로 데이터를 스케줄링하여 사용자의 평균대기시간을 구하는 실험을 하였다. 실험 결과 빈도만 고려한 방법에 비해 약 13%의 성능이 증가되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.