• Title/Summary/Keyword: 최악조건 생성과정

Search Result 3, Processing Time 0.016 seconds

Worst Case Scenario Generation on Vehicle Dynamic Stability and Its Application (주행 안정성을 고려한 최악 상황 시나리오 도출 및 적용)

  • Jung, Dae-Yi;Jung, Do-Hyun;Moon, Ki-Hyun;Jeong, Chang-Hyun;Noh, Ki-Han;Choi, Hyung-Jeen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2008
  • The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situation including the worst case such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they aren't enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios mentioned above and its application in simulation basis. The only human steering angle is selected as a design parameter here and optimized to maximize the index function to be expressed in terms of either roll angle or yaw rate. The obtained scenarios were enough to generate the worst case to meet NHTSA worst case definition (ex.2-inch wheel lift). Additionally, as an application, the worst case steering maneuver is acquired for the vehicle to operate with a simple ESP system. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle system both with an intelligent safety control system and without it.

Worst-case Development and Evaluation for Vehicle Dynamics Controller in UCC HILS (차량자세제어 최악상황 개발 및 UCC HILS 시스템 기반 성능 평가)

  • Kim, Jin-Yong;Jung, Do-Hyun;Jeong, Chang-Hyun;Choi, Hyung-Jeen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.30-36
    • /
    • 2011
  • The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situation including the worst case such as rollover, spin-out and so on. Although the known NHTSA Sine with dwell steering maneuvers are applied for the vehicle performance assessment, they aren't enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst cases including the existing severe steering maneuvers. This paper includes useful worst case based upon the existing worst case scenarios mentioned above and worst case evaluation for vehicle dynamic controller in simulation basis and UCC HILS. The only human steering angle is selected as a design parameter here and optimized to maximize the index function to be expressed in terms of both yaw rate and side slip angle. The obtained scenarios were enough to generate the worst case to meet NHTSA worst case definition. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle dynamic control system.

Abnormal Voltage Detection Circuit with Single Supply Using Threshold of MOS-FET for Power Supply Input Stage (FET 문턱전압 특징을 이용한 전원입력단용 단일전원 이상전원 검출회로)

  • Won, Joo Ho;Ko, Hyoungho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.107-113
    • /
    • 2016
  • All circuits in power input can only use the power provided by an external power supply. General electronic circuits use a secondary supply generated by a converter using a primary power in the power input. But protection and detection circuit for over-voltage circuit or under-voltage in power input have to use that input power because there is no other supply in power input. Therefore, previous electronics for satellite can protect only over-voltage using a zener diode, and can't detect over-voltage and under-voltage events, and provide a detection capability for over-voltage and under-voltage only for secondary supply. The proposed circuit can detect over-voltage and under-voltage using a single supply for the primary power input, +28V, with the threshold characteristics for MOS-FET, and the accuracy for a detection circuit is increased by 2.5%.