• Title/Summary/Keyword: 최대 전력 추적

Search Result 93, Processing Time 0.027 seconds

A Novel Hybrid MPPT Control for Photovoltaic System (태양광 발전시스템의 새로운 하이브리드 MPPT 제어)

  • Kim, Soo-Bin;Jo, Yeong-Min;Choi, Ju-Yeop;Song, Seung-Ho;Choy, Ick;Lee, Young-Kwon
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.7-8
    • /
    • 2014
  • 본 논문에서는 보편적으로 태양광 시스템에 적용되는 MPPT(Maximum Power Point Tracking) 기술들이 가지는 단점을 상호 보완하는 하이브리드 MPPT 제어 알고리즘을 제안하였다. 널리 사용되고 있는 MPPT 기술들을 비교하여 분석하였고, 이를 바탕으로 각 기술들의 단점을 상호 보완할 수 있는 요소들을 추출하여 MPPT 알고리즘에 적용하였다. 구현된 알고리즘은 최대전력점으로부터 동작점이 떨어져 있는 경우 빠르게 추적할 수 있는 속응성을 가지며, 정상상태에서는 안정도를 높이고, 국부적인 최대전력점(LMPP; Local Maximum Power Point) 발생 시 이를 감지하여 전체 특성 곡선의 최대전력점(GMPP; Global Maximum Power Point)을 찾아가도록 하였다. 또한 시뮬레이션을 통해 그 특성을 확인하였다.

  • PDF

Model for Maximum Power Point Tracking Using Artificial Neural Network and Fuzzy (인공 신경망과 퍼지를 이용한 최대 전력점 추적을 위한 모델)

  • Kim, Tae-Oh;Ha, Eun-Gyu;Kim, Chang-Bok
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.9
    • /
    • pp.19-30
    • /
    • 2019
  • Photovoltaic power generation requires MPPT algorithm to track stable and efficient maximum power output power point according to external changes such as solar radiation and temperature. This study implemented a model that could track MPP more quickly than original MPPT algorithm using artificial neural network. The proposed model finds the current and voltage of MPP using the original MPPT algorithm for various combinations of insolation and temperature for training data of artificial neural networks. The acquired MPP data was learned using the input node as insolation and temperature and the output node as the current and voltage. The Experiment results show tracking time of the original algorithms P&O, InC and Fuzzy were respectively 0.428t, 0.49t and 0.4076t for the 0t~0.3t range, and MPP tracking time of the proposed model was 0.32511t and it is 0.1t faster than the original algorithms.

Maximum Power Point Tracking operation of Thermoelectric Module without Current Sensor (전류센서가 없는 열전모듈의 최대전력점 추적방식)

  • Kim, Tae-Kyung;Park, Dae-Su;Oh, Sung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.436-443
    • /
    • 2017
  • Recently, the development of new energy technologies has become a hot topic due to problems,such as global warming. Unlike renewable energy technologies, such as solar energy generation, solar power, and wind power, which are optimized to achieve medium or above output power, the output power of energy harvesting technology is very small and has not received much attention. On the other hand, as the mobile industry has been revitalized recently, the utility of energy harvesting technology has been reevaluated. In addition, the technology of tracking the maximum power point has been actively researched. This paper proposes a new MPPT(Maximum Power Point Tracking) control method for a TEM(thermoelectric module) for load resistance. The V-I curve characteristics and internal resistance of TEM were analyzed and the conventional MPPT control methods were compared. The P&O(Perturbation and Observation) control method is more accurate, but it is less economical than the CV (Constant Voltage)control method because it usestwo sensors to measure the voltage and current source. The CV control method is superior to the P&O control method in economic aspects because it uses only one voltage sensor but the MPP is not matched precisely. In this paper, a method wasdesigned to track the MPP of TEM combining the advantages of the two control method. The proposed MPPT control method wasverified by PSIM simulation and H/W implementation.

A Study on the Development of Hybrid Micro Power Sources for the IMT2000 (IMT2000을 위한 혼성마이크로 동력원 개발에 관한 연구)

  • Kim il-Song;Youn Myung-Joong;Kim Jung-Han;Ju Hun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.203-210
    • /
    • 2005
  • A study on the hybrid micro power source for the IMT2000 application has been presented. The hybrid micro power source is composed of solar cell, super-capacitor and battery. To compensate for the pulse loader of the IMT2000 application, the super-capacitor is connected through the lithium-lon battery to absorb the pulse discharge current. The solar cell provides the additional current to compensate for the depleted current and it is controlled to operate at the maximum power point voltage. A novel maximum power point tracking method is presented to operate at the pulse discharge load conditions and verified to have superior tracking performance through experiment. The controller design for the hybrid micro power source has been presented and verified through experiment.

A Noble Maximum Power Point Tracking Algorithm for Photovoltaic System without Chopper (초퍼 없는 태양광 발전시스템을 위한 새로운 최대전력점 추적 알고리즘)

  • 李 相 庸;崔 海 龍;高 再 錫;姜 秉 憙;李 明 彦;崔 圭 夏
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • The Photovoltaic systems with solar cell way Provide electrical energy to the utility/consumers, which are becoming one of the promising energy substitutes. The photovoltaic system can be classified into two types : One is the stand-alone type, and the other utility interactive one. The latter can return the generated power to the utility, but the former can't. The utility interactive systems are so valuable for peak power cut in summer season. In the photovoltaic systems the maximum power point tracking (MPPT) has been studied for the increase of the generating energy of the photovoltaic system. There are many control methods of MPPT, but a new MPPT algorithm is proposed to overcome the disadvantages of the conventional ones, and as a result the proposed method enables to improve both tracking ability and generating efficiency of photo voltaic system without DC chopper.

Maximum Power Point Tracking of Photovoltaic using Improved Particle Swarm Optimization Algorithm (개선된 입자 무리 최적화 알고리즘 이용한 태양광 패널의 최대 전력점 추적)

  • Kim, Jae-Jung;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.291-298
    • /
    • 2020
  • This study proposed a model that can track MPP faster than the existing MPPT algorithm using the particle swarm optimization algorithm (PSO). The proposed model highly sets the acceleration constants of gbest and pbest in the PSO algorithm to quickly track the MPP point and eliminates the power instability problem. In addition, this algorithm was re-executed by detecting the change in power of the solar panel according to the rapid change in solar radiation. As a result of the experiment, MPP time was 0.03 seconds and power was 131.65 for 691.5 W/m2, and MPP was tracked at higher power and speed than the existing P&O and INC algorithms. The proposed model can be applied when a change in the amount of power is detected by partial shading in a Photovoltaic power plant with Photovoltaic connected in parallel. In order to improve the MPPT algorithm, this study needs a comparative study on optimization algorithms such as moth flame optimization (MFO) and whale optimization algorithm (WOA).

Analog MPPT Tracking MPP within One Switching Cycle for Photovoltaic Applications (One Switching Cycle 내에 최대전력점을 추종하는 태양광 발전의 아날로 MPPT 제어 시스템)

  • Ji, Sang-Keun;Kwon, Doo-Il;Yoo, Cheol-Hee;Han, Sang-Kyoo;Roh, Chung-Wook;Lee, Hyo-Bum;Hong, Sung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • Tracking the Maximum Power Point(MPP) of a photovoltaic(PV) array is usually an essential part of a PV system. The problem considered by MPPT techniques is to find the voltage $V_{MPP}$ or current $I_{MPP}$ at which a PV array should operate to generate the maximum power output PMPP under a given temperature and irradiance. The MPPT control methods, such as the perturb and observe method and the incremental conductance method require microprocessor or DSP to determine if the duty cycle should be increased or not. This paper proposes a simple and fast analog MPPT method. The proposed control scheme will track the MPP very fast and its hardware implementation is so simple, compared with the conventional techniques. The new algorithm has successfully tracked the MPP, even in case of rapidly changing atmospheric conditions, and Has higher efficiency than ordinary algorithms.

Power system Design of KITSAT-4 Satellite (과학위성 1호 전력계 설계)

  • 과학위
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.443-447
    • /
    • 2000
  • 본 논문에서는 과학위성 1호의 전력계 설계에 대해서 서술한다 과학위성 1호의 전력계는 크게 Power stage와 Control stage로 나누어지는데 Power stage 는 200[Watt] Buck으로 구성되어 있으며 Control stage는 Hardware 제어기인 최대전력 추적기와 배터리 전압제어기 Software control을 위한 베터리 전류제어기와 직접 듀티제어기로 이루어져 각 동작모드에 따라서 적절한 제어기를 선택할 수 있게 되어있다. 따라서 신뢰성 있는 제어와 정밀제어를 선택적으로 정할 수 있기 때문에 위성의 운용면에서 용이성을 제공해 준다.

  • PDF

소형 휴대용 추적식 태양광 충전시스템의 상품화를 위한 실증 연구

  • Lee, Man-Geun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.173-181
    • /
    • 2005
  • 현대문명의 총아로 각광받는 노트북, Mobile 컴퓨터는 날로 소형화 또는 경량화 되고 있다. 그러나 이와 같은 휴대용 전자기기는 전력소비가 비교적 많은 관계로 옥외에서 사용시에 추가적인 전력 공급이 없이는 사용시간이 제한된다. 따라서 주간에 태양전지를 이용하여 휴대용 전자기기에 적합한 직류전원을 직접 공급할 수 있다면 지속적인 활용이 가능하다. 따라서 야외에서 장시간 사용할 시에는 태양전지의 발전량을 최대로 얻기 위하기 저 전력 소모형태의 태양 추적장치를 개발하여 활용할 필요가 있다. 이와 같은 제품이 개발될 경우에는 야외훈련이 많은 군부대의 작전시에 많이 사용되는 무전기, 휴대용 컴퓨터(Notebook 또는 Mobile Computer) 등의 충전용 전원으로 활용할 수 있다. 동시에 태양에너지인 청정에너지를 활용함으로서 환경공해를 최소화 할 수 있게 된다.

  • PDF

Design of a Vibration Energy Harvesting Circuit With MPPT Control (MPPT 제어 기능을 갖는 진동에너지 하베스팅 회로 설계)

  • Park, Joon-Ho;Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2457-2464
    • /
    • 2011
  • In this paper, a vibration energy harvesting circuit using a piezoelectric device is designed. MPPT(Maximum Power Point Tracking) control function is implemented using the electric power-voltage characteristic of a piezoelectric device to deliver the maximum power to load. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a full-wave rectifier circuit connected to the piezoelectric device output and delivers the maximum available power to load. The proposed vibration energy harvesting circuit is designed with $0.18{\mu}m$ CMOS process. Simulation results show that the maximum power efficiency of the designed circuit is 91%, and the chip area except pads is $700{\mu}m{\times}730{\mu}m$.