• Title/Summary/Keyword: 최대 안전 경사각도

Search Result 4, Processing Time 0.018 seconds

Review of Regulation for Rollover Test and Evaluation of Safety for Buses by using Simulation of Multi-body Dynamics (다물체 동역학 시뮬레이션을 통한 버스의 전복 시험 규정과 안전성 평가에 관한 고찰)

  • Park, Seung Woon;Choi, Yo Han;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.39-46
    • /
    • 2022
  • In South Korea, to evaluate the rollover safety of domestic vehicles, the maximum slope angle of the vehicle is specified, which is verified by the rollover safety test of driving vehicles. However, the domestic rollover safety test is not suitable for buses, because the small amount of static stability factor (SSF) will invalidate the rollover experimental equation due to the high center of mass position of buses. To solve the above problems, a dynamic model of the bus is prepared with assumptions of mass and suspension spring properties. Subsequently, the maximum slope angle of the model was computed by using the simulation of multi-body dynamics, and the result was compared with actual test results to validate the dynamics model. Also, the rollover Fishhook (roll stability) test was conducted in the simulation for driving model. During the simulation, roll angle and roll rate were calculated to check if a rollover occurred. Through the rollover simulation of buses, the domestically regulated formula for rollover safety and the procedure of rollover test for driving vehicles are evaluated. The conclusion is that the present regulation of rollover test should be reconsidered for buses to ensure to get the valid results for rollover safety.

Landscape Preference over Single-Spaned Steel Box Girder Bridge by Bridge Shape Parameters (단경간 강박스거더교의 교량형상계수별 경관선호도 분석에 관한 연구)

  • Kim, Rak-Gi;Geum, Gi-Jeong;Yang, Gye-Seung;Im, Seong-Bin
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.7-18
    • /
    • 2006
  • The Purpose of this study is to develop landscape Preference and define elements of difference in landscape preference of the 1-span Steel Box Girder Bridge by Bridge Shape Parameters(BSP) through Design of Experiments. Lately, the 1-span Steel Box Girder Bridge is dominations much component ratio and the Steel Box Girder Bridge has strong Points that is economically Profitable and management has easy when construct. but landscape preference of the 1-span Steel Box Girder Bridge was evaluated low because impression of landscape is being surfeited and dulled. Do to consider optimization in design that give change to Bridge Shape Parameters(BSP) to supplement this shortcoming in this study. Therefore, this study changes Bridge Shape Parameters(BSP) and extract elements that influence in landscape preference of the 1-span Steel Box Girder Bridge. and based on the design that consider landscape Preference of the 1-span Steel Box Girder Bridge, some essential guidelines for rational design of the 1-span Steel Box Girder Bridge suggested.

A Study on the Relationship between Ship Stability and Maneuverability Using Free Running Model Experiments (자유항주 모형실험에 의한 선박의 복원성능과 조종성능 관계 연구)

  • Choe, Bo-Ra;IM, Nam-Kyun
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.353-360
    • /
    • 2016
  • The International Maritime Organization (IMO) has issued international standards for ship maneuverability and stability. These have been established to improve marine safety and influence the direction of research. The previous literature has been researched, but there are few studies on the relationship between ship maneuverability and stability. This study carried out a fundamental experiment to quantitatively evaluate that relationship. Radius of turn and maximum heel angle depending on changing were analyzed through a turning test using a free running model ship. The test results show the change tendency of decreasing turn radius and increasng maximum heel angle according to a GM decrease. A rough estimate equation is proposed to predict the change tendency on radius of turn and angle of maximum heel as GM decreases. Many ships can suddenly experience reduced GM due to unexpected reasons during sailing. The results in this study can be used as fundamental data to estimate a ship's tactical turn diameter and variable heel angle for steering as GM decreases.

A Trend of Back Ground Surface Settlement of Braced Wall Depending on the Joint Dips in Rocks under the Soil Strata (복합지반 굴착 시 암반층 절리경사 각도별 흙막이 벽체 배후 지표침하의 경향)

  • Bae, Sang-Su;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.83-96
    • /
    • 2016
  • The surface settlement of the back ground of a braced wall due to the ground excavation has the great influence on the safety of the surrounding area. But it is not easy to predict the settlement of the surrounding area due to proud excavation. Estimation of the settlement of the surface ground induced by the deformation of the braced wall is performed by FEM and empirical method (Peck, Clough etc). In this research, surface settlement of the back ground braced wall depending on the joint dips in rocks during excavating the composit ground was measured at the large scale model test (standard: $0.3m{\times}0.3m{\times}0.5m$). The scale of model test was 1/14.5 and the ground was excavated in ten steps. Earth pressure on the braced wall and ground surface settlement on the back ground of a braced wall were investigated. The surface settlement during the excavation depended on the joint dips in rocks on of the ratio of rock layer. Maximum earth pressure and maximum surface settlement were masured at the same excavation step. In accordance with the increase of the rock layer dips and rock layer ratio, the ground surface settlement increased. The maximum ground surface settlement was 17 times larger at 60 degree joint dips in rocks than that of the horizontal ground conditions. And the position of the maximum surface settlement by empirical method was calculated at the point, which was 17%~33% of excavation depth. In accordance with the increase of the rock layer dips and rock layer ratio, the ground maximum surface settlement increased. The ground surface settlement of composite ground is smaller than that of the empirical.