• Title/Summary/Keyword: 최대 수명

Search Result 442, Processing Time 0.043 seconds

Low Power EccEDF Algorithm for Real-Time Operating Systems (실시간 운영체제를 위한 저전력 EccEDF 알고리듬)

  • Lee, Min-Seok;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.1
    • /
    • pp.31-43
    • /
    • 2015
  • For battery based real-time embedded systems, high performance to meet their real-time constraints and energy efficiency to extend battery life are both essential. Real-Time Dynamic Voltage Scaling (RT-DVS) has been a key technique to satisfy both requirements. In this paper, we present an efficient RT-DVS algorithm called EccEDF that is designed based on ccEDF. The proposed algorithm can precisely calculate the maximum unused utilization with consideration of the elapsed time while keeping the structural simplicity of ccEDF, which overlooked the time needed to run the task in calculating the available slack. The maximum unused utilization can be calculated by dividing remaining execution time($C_i-cc_i$) by remaining time($P_i-E_i$) on completion of the task and it is proved using Fluid scheduling model. We also show that the algorithm outperforms ccEDF in practical applications which is modelled using a PXA250 and a 0.28V-to-1.2V wide-operating-range IA-32 processor model.

Development of a Probabilistic Joint Opening Model using the LTPP Data (LTPP Data를 이용한 확률론적 줄눈폭 예측 모델 개발)

  • Lee, Seung Woo;Chon, Sung Jae;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.593-600
    • /
    • 2006
  • Joint opening of jointed concrete pavement is caused by change in temperature and humidity of adjoined slab. The magnitude of joint opening influences on the load-transfer-efficiency and the behavior of sealant. If temperature or humidity decreases, joint opening increases. Generally maximum joint opening of a given joint is predicted by using AASHTO equation. While different magnitudes of joint opening at the individual joints have been observed in a given pavement section, AASHTO equation is limited to predict average joint opening in a given pavement section. Therefore the AASHTO equation may underestimate maximum joint for the half of joint in a given pavement section. Joints showing larger opening than the designed may experience early joint sealant failure, early faulting. Also unexpected spalling may be followed due to invasion of fine aggregate into the joints after sealant pop-off. In this study, the variation of the joint opening in a given pavement section was investigated based on the LTPP SMP data. Factors affecting on the variation are explored. Finally a probabilistic joint opening model is developed. This model can account for the reliability of the magnitude of joint opening so that the designer can select the ratio of underestimated joint opening.

A Study on the Fatigue Fracture Behavior in Butt Welded Joints of Steel Structures (강구조물(鋼構造物) 맞대기 용접연결부(鎔接連結部)의 피로파괴거동(疲勞破壞擧動)에 관한 연구(硏究))

  • Park, Je Seon;Chung, Yeong Wha;Kim, Jeong Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.53-62
    • /
    • 1986
  • For the research on the fatigue fracture behavior in the welded joints of steel structures, base metal specimens and welded ones were selected, and the direct fatigue tests were carried out. Thereafter, fatigue-life (S-N) curves, plastic strain-number of cycles (${\varepsilon}_p$-N) curve, the extrapolated fatigue-life (${\varepsilon}_p$-$N_c$) curve, and da/dN-${\Delta}K$ curves were plotted. By these results the followings were obtained. It was shown that the ratio of fatigue strength at $2{\times}10^6$ cycles of the welded specimen to that of the base metal one was 0.6, and that 0.72 for the base metal and 0.65 for the welded one were the ratio of fatigue strength at $2{\times}10^6$ cycles to yielding stress. The S-N curve for the welded specimen was separated into two sections, the low gradient section and the steep section. As this result, it was shown that the more stress became to reduce, the more the reduction of fatigue strength became to be great. It was shown that fatigue strength at $2{\times}10^6$ cycles from this case was about 83 % of that from the S-N curve plotted with one section. It was thought that the reason was that weld flaw acted greatly on the fatigue strength within the low stress range. It was shown that at the instart of crack initiation plastic strain increased abrupt1y in the case of the welded specimen more than the case of the base metal specimen, and increased abruptly in the upper stress range in both cases. It was shown that the experimental constant ${\alpha}$, 0.42, in the base metal nearly accorded with Manson-Coffin's result, but this made a great difference with the case in the welded specimen. It was thought that it was due to the abrupt change of plastic strain and the influence of weld flaw.

  • PDF

Fatigue fracture of different dental implant system under cyclic loading (반복하중에 따른 수종 임플란트의 피로파절에 관한 연구)

  • Park, Won-Ju;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.424-434
    • /
    • 2009
  • Statement of problem: Problems such as loosening and fractures of retained screws and fracture of implant fixture have been frequently reported in implant prosthesis. Purpose: Implant has weak mechanical properties against lateral loading compared to vertical occlusal loading, and therefore, stress analysis of implant fixture depending on its material and geometric features is needed. Material and methods: Total 28 of external hexed implants were divided into 7 of 4 groups; Group A (3i, FULL $OSSEOTITE^{(R)}$Implant), Group B (Nobelbiocare, $Br{\aa}nemark$ $System^{(R)}$Mk III Groovy RP), Group C (Neobiotec, $SinusQuick^{TM}$ EB), Group D (Osstem, US-II). The type III gold alloy prostheses were fabricated using adequate UCLA gold abutments. Fixture, abutment screw, and abutment were connected and cross-sectioned vertically. Hardness test was conducted using MXT-$\alpha$. For fatigue fracture test, with MTS 810, the specimens were loaded to the extent of 60-600 N until fracture occurred. The fracture pattern of abutment screw and fixture was observed under scanning electron microscope. A comparative study of stress distribution and fracture area of abutment screw and fixture was carried out through finite element analysis Results: 1. In Vicker's hardness test of abutment screw, the highest value was measured in group A and lowest value was measured in group D. 2. In all implant groups, implant fixture fractures occurred mainly at the 3-4th fixture thread valley where tensile stress was concentrated. When the fatigue life was compared, significant difference was found between the group A, B, C and D (P<.05). 3. The fracture patterns of group B and group D showed complex failure type, a fracture behavior including transverse and longitudinal failure patterns in both fixture and abutment screw. In Group A and C, however, the transverse failure of fixture was only observed. 4. The finite element analysis infers that a fatigue crack started at the fixture surface. Conclusion: The maximum tensile stress was found in the implant fixture at the level of cortical bone. The fatigue fracture occurred when the dead space of implant fixture coincides with jig surface where the maximum tensile stress was generated. To increase implant durability, prevention of surrounding bone resorption is important. However, if the bone resorption progresses to the level of dead space, the frequency of implant fracture would increase. Thus, proper management is needed.

Ecological Characteristics of Dorcus hopei(E Saunders) for the Development of Mass-rearing Technique in Korea (왕사슴벌레(Dorcus hopei)의 대량사육 기술개발을 위한 생태특성 조사)

  • Kim, Chul-Hak;Lee, Jun-Seok;Jung, Geun;Park, Kyu-Taek
    • Korean journal of applied entomology
    • /
    • v.43 no.2
    • /
    • pp.135-141
    • /
    • 2004
  • This study was carried out to review the distributional data of Dorcus hopei in Korea and to investigate ecological characteristics to develop a mass rearing technique of the species. The coupling period of the male and female was needed at least 2 weeks in condition of 6 months after emergence, and the optimal sex ratio for oviposition was 2♀:1♂. Eggs were laid singly, up to 27.3 per female. The pre-ovipostion period was average 147.3 days, egg-period was 15.6 days on the average, and oviposition period was at least 120 days. The optimum size of oviposition room was 55${\times}$40${\times}$35 cm with 3-4 oviposition-trees cut in size of 15${\times}$15 cm. Quercus acutissima was highly preferred for the oviposition. Developing period of each instar in the insectary (25$^{\circ}C$, 75% R.H.. 16L:8D) was 24.1 days for the 1st instar,29.8 days for the 2nd, and 131.2 days for the 3rd instar, and 28.9 days for the pupa. The longevity of adults was longer than 35 months. The period of induced dormancy was needed at least 3-4 months.

Life Cycle Assessment of Timber Arch-Truss Bridge by Using Domestic Pinus rigida Glued-Laminated Timber (리기다소나무 구조용 집성재를 활용한 아치 트러스 목조교량의 전과정평가)

  • Son, Whi-Lim;Park, Joo-Saeng;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • This study carried out life cycle assessment for evaluating environmental impacts of timber Arch-Truss bridge by using domestic Pinus rigida Miller glued-laminated timber throughout life cycle such as extraction, manufacturing, transportation, construction, use, dismantlement, transportation of waste, disposal and recycling. The life cycle GHG (GreenHouse Gas) emissions of the target bridge are 192.56 ton $CO_2$ eq. in 50 years. Especially, the life cycle GHG emissions of concrete used in the target bridge are 82.84 ton $CO_2$ eq. which accounts for 53.02% of the GWP (Global Warming Potential) in extraction and manufacturing stages. The target bridge is constructed of $116.57m^3$ of domestic Pinus rigida Miller glued-laminated timber and used timber has stored 104.72 ton $CO_2$. If an effect of carbon storage in timber is applied to the total GHG emissions of the target bridge, the GHG emissions can be reduced by 54.38%. In the case of substitution effect, if domestic Pinus rigida Miller glued-laminated timber replaces steel manufactures used in other bridge which has the same structure and life span as the target bridge, the GHG emissions in extraction and manufacturing stages can be reduced by 10.26% to 23.91%.

Dynamic-size Multi-hop Clustering Mechanism based on the Distance in Sensor Networks (센서 네트워크에서의 거리에 따른 동적 크기 다중홉 클러스터링 방법)

  • Ahn, Sang-Hyun;Lim, Yu-Jin
    • The KIPS Transactions:PartC
    • /
    • v.14C no.6
    • /
    • pp.519-524
    • /
    • 2007
  • One of the most important issues on the sensor network with resource limited sensor nodes is prolonging the network lifetime by effectively utilizing the limited node energy. The most representative mechanism to achieve a long lived sensor network is the clustering mechanism which can be further classified into the single hop mode and the multi hop mode. The single hop mode requires that all sensor nodes in a cluster communicate directly with the cluster head(CH) via single hop md, in the multi hop mode, sensor nodes communicate with the CH with the help of other Intermediate nodes. One of the most critical factors that impact on the performance of the existing multi hop clustering mechanism is the cluster size and, without the assumption on the uniform node distribution, finding out the best cluster size is intractable. Since sensor nodes in a real sensor network are distributed non uniformly, the fixed size mechanism may not work best for real sensor networks. Therefore, in this paper, we propose a new dynamic size multi hop clustering mechanism in which the cluster size is determined according to the distance from the sink to relieve the traffic passing through the CHs near the sink. We show that our proposed scheme outperforms the existing fixed size clustering mechanisms by carrying out numerical analysis and simulations.

Analysis of Environmental Effects for Linear Type Traits and Scoring Traits on Holstein Cows (Holstein 젖소의 선형심사형질과 등급형질에 대한 환경효과 분석)

  • 이득환;김은길
    • Journal of Animal Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.767-776
    • /
    • 2006
  • Corresponding author:Deukhwan Lee, Department of Animal Life Resources, Hankyong National Univ. Seokjeong-dong Anseong-si Gyeonggi-do, Rep. of Korea 456-749Tel: 031-670-5091, Fax: 031-676-5091, E-mail : dhlee@hknu.ac.krGeneral performance with including environmental and management effects on linear type traits in Holstein cows were investigated. 115,646 valid records measured from cows over 1 yrs of age by Korean Animal Improvement Association from 2000 to 2004 were used for this study. Farm, appraisal year-month, appraisal person should affect linear type and scoring traits. Most of type traits and scoring traits would be significantly affected by parity and lactation stage after absorbing farm-appraisal year-month-person effects. Otherwise, some traits such as traits related to udder would be affected by registration criteria. However, interval of appraisal time and milking time would not affect these traits. The scores related to udder, teat placement and foot angle would be positively related to parity. Final score would be optimized at cows of 2nd and 3rd parities. Dairy form, front teat placement, rear udder height, rear udder width and final score would show similar to pattern of lactation curve at lactation stage. Dairy capacity composite index would also show similar to lactation curve. This result would be indicated that more concise standardizing system for linear type scoring rules would be needed. Furthermore, correcting system for parity and lactation stage would be needed because this factor should affect physiological status, specially, udder status.

An Improved Method of Developing Safety-Related Application Conditions for Safety Design of Railway Signalling Systems (철도신호시스템의 안전 설계를 위한 개선된 안전성 적용 조건 도출 방법)

  • Baek, Young-Goo;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.31-45
    • /
    • 2017
  • According to the railway accident statistics in recent years, the frequency of accidents has been significantly reduced, due to the advance of related technologies and the establishment of safety information management systems. Nonetheless, accidents due to errors in the operation and maintenance phase and faults in safety design continue to occur. Therefore, to prevent accidents, guidelines for the safety design and manufacture of railway vehicles were established, and a request for the independent safety evaluation of safety designs was made. To respond to this, rail system developers must prepare safety cases as a safety activity product. One of the main items of these safety cases is the safety-related application conditions (SRAC) and, thus, the question of how to develop these SRAC is an important one. The SRAC studies reported so far focused only on the simplicity of the derivation procedure and the specific safety activities in the design phase. This method seems to have the advantage of quickly deriving SRAC items. However, there is a risk that some important safety-related items may be missing. As such, this paper proposes an improved method of developing the SRAC based on the idea of performing both the safety design and safety evaluation activities throughout the whole system lifecycle. In this way, it is possible to develop and manage the SRAC more systematically. Especially, considering the SRAC from the initial stage of the design can allow the safety requirements to be reflected to a greater extent. Also, an application case study on railway signaling systems shows that the method presented herein can prevent the omission of important safety-related items, due to the consideration of the SRAC throughout the system lifecycle.

A Study on the Fatigue Failure Behavior of Cheon-Ho Mt. Limestone Under Cyclic Loading (천호산 석회암의 반복하중에 의한 피로파괴거동에 관한 연구)

  • Lee, Jong-Uk;Rhee, Chan-Goo;Kim, Il-Jung;Kim, Yeong-Seok
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.98-109
    • /
    • 1992
  • In this study uniaxial cyclic loading tests were performed on Cheon-Ho Mt. Limestone specimens to investigate the fatigue failure behavior. The loading rate was kept constantly at 760kg/$\textrm{cm}^2$/sec under cyclic loading. In order to reveal the fatigue behavior for each rock type, the test results were mutually compared with previous studies carried out on Indiana Limes-tone and Seong-Ju Sandstone. Fatigue data is presented in the form of S-N curves, which illustrate the relationship of maximum applied stress(S) to the number of cycles(N) required to produce failure. For the purpose of comparing the S-N curves for each rock type, the test data were formulated up to 10$^4$cycles and the correlation coefficients(R) on Cheon-Ho Mt. Limestone and Seong-Ju Sandstone specimen are 0.886 and 0.983, respectively. All three rock specimens were found to have shorter fatigue life at higher applied stress levels. The fatigue life for each rock type was considered as no less than 81.5, 70 and 74.8%, for Cheon-Ho Mt. Limestone, Indiana Limestone and Seong-Ju Sandstone, respectively. The comparison in static strength for monotonic loaded specimens and specimens which did not fail even after 10$^4$cycles indicated that the increasing rate of strength was about 6.18 and 10.96% , for Cheon-Ho Mt. Limestone and Indiana Limestone, respectively. Poisson's ratio and volumetric strain for Cheon-Ho Mt. Limestone and Seong-ju Sandstone, tended in all the cases to rapidly increase at higher stress levels and with an increase in number of cycles. This increasing trend becomes rapid and obvious just before failure. Also Poisson's ratio and volumetric strain for each stress level were compared and analyzed at the first cycle and the cycle prior to failure.

  • PDF