• Title/Summary/Keyword: 최대 모세관 압력

Search Result 3, Processing Time 0.014 seconds

Theoretical Analysis of Heat Pipe Thermal Performance According to Nanofluid Properties (나노유체 특성에 따른 히트파이프 성능해석)

  • Lim, Seung Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.599-607
    • /
    • 2015
  • In this study, we theoretically investigate the thermal performances of heat pipes that have different nano-fluid properties. Two different types of nano-particles have been used: $Al_2O_3$ and CuO. The thermal performances of the heat pipes are observed for varying nano-particle aggregations and volume fractions. Both the viscosity and the conductivity increase as the volume fraction and the aggregation increase, respectively. Increasing the volume fraction helps increase the capillary limit in the well-dispersed condition. Whereas, the capillary limit is decreased under the aggregate condition, when the volume fraction increases. The dependence of the heat pipe thermal resistance on the volume fraction, aggregation, and conductivity of the nano-particles is analyzed. The maximum thermal transfer of the heat pipe is highly dependent on the volume fraction because of the high permeability of the heat pipe. For the proposed heat pipe, the optimum volume fraction of the nano-particle can be seen through 3D graphics.

Study on a Operating Characteristics of Loop Heat Pipe Using a Brass Sintered Metal Wick-Water (황동소결윅-물 LHP의 작동 특성에 관한 연구)

  • Lee, Wook-Hyun;Lee, Ki-Woo;Park, Ki-Ho;Lee, Kye-Jung;Noh, Seung-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1528-1533
    • /
    • 2004
  • In this study, we have manufactured the LHP(Loop Heat Pipe) with sintered metal wick and investigated the working characteristics of LHP experimentally.Water was used as a working fluid and fill charge rate was changed. LHP basically consist of the separated vapor/liquid channels, evaporator having sintered metal wick(effective pore diameter :$16{\sim}19{\mu}m$), and condenser cooled by water. The diameter of vapor/liquid line tube are 3.2mm/6.35mm, respectively. Heat transfer rate and thermal resistance was represented to study the basic characteristics of LHP at each conditions

  • PDF

Analytical Modeling of a Loop Heat Pipe with a Flat Evaporator by Applying Thin-Film Theory (평판형 증발부를 갖는 루프히트파이프에 대해 박막이론을 적용한 해석적 모델링)

  • Jung, Eui-Guk;Boo, Joon-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1079-1085
    • /
    • 2010
  • A steady-state analytical model was presented for a loop heat pipe (LHP) with an evaporator that has a flat geometry. On the basis of a series of reviews of the relevant literature, a sequence of calculations was proposed to predict the temperatures and pressures at each important part of the LHP: the evaporator, liquid reservoir (compensation chamber), liquid line, vapor line, and condenser. The analysis of the evaporator, which is the only part in the LHP that has a capillary structure, was emphasized. Thin-film theory is applied to account for the pressure and temperature in the region adjacent to the liquid-vapor interface in the evaporator. The present study introduced a unique method to estimate the liquid temperature at the interface. Relative freedom was assumed in the configuration of a condenser with a simplified liquid-vapor interface. Our steady-state model was validated by experimental results available in the literature. The relative error was within 3% on the absolute temperature scale, and reasonable agreement was obtained.