• Title/Summary/Keyword: 최대환기량

Search Result 83, Processing Time 0.021 seconds

Seasonal Dust Concentration and Characteristics of Windowless Broiler Building (무창 육계사의 계절별 먼지 농도와 특성 연구)

  • Choi H. C.;Yeon G. Y.;Song J. I.;Kang H. S.;Kwon D. J.;Yoo Y. H.;Barroga A. J.;Yang C. B.;Chun S. S.;Kim Y. K.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.3
    • /
    • pp.197-206
    • /
    • 2005
  • This study was carried out to investigate the concentration and characteristics of dust originating from windowless broiler building in each season. 12.0m width and 46m tenth with side wall height of 3.0m was investigated and capacity was 12,800 birds at a stock density of 23.2 birds per square meter. Dust concentrations in terms of total suspended particles (TSP), and particulate matter of sizes $10{\mu}m(PM10),\;2.5{\mu}m (PM2.5),\;and\;1{\mu}m(PM1)$ were measured at 30-minute intervals. On the basis of broiler age, the average dust concentration in summer in TSP as follows: 1,229 904.5 558.8 and $1,053{\mu}g/m^3$ on the broilers' first to fourth week of age, respectively. But during winter, the average dust concentration showed an increasing pattern, as follows: 465.4, 1,401, 4,497, 5,097 and $6,873{\mu}g/m^3$ on the broilers' first to fifth week of age, respectively. The maximum dust concentration of $11,132{\mu}g/m^3$ was observed on the fifth week. On a daily basis, the maximum dust concentration during summer was detected in early morning, and the minimum in the afternoon. The aerial dust particle size of $0.05\~0.35{\mu}m$ was the highest in number. But on volume basis, particle size of 16~99 un had the largest percentage in the broiler house. Crude protein of the dust $(42.8\~65.2\%)$, on dry matter basis, was higher than that $(20.5\~24.5\%)$ fed to the broilers. Heavy metal concentration of the dust also had high levels compared with that of the feed.

  • PDF

Study on PM10, PM2.5 Reduction Effects and Measurement Method of Vegetation Bio-Filters System in Multi-Use Facility (다중이용시설 내 식생바이오필터 시스템의 PM10, PM2.5 저감효과 및 측정방법에 대한 연구)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.80-88
    • /
    • 2020
  • With the issuance of one-week fine dust emergency reduction measures in March 2019, the public's anxiety about fine dust is increasingly growing. In order to assess the application of air purifying plant-based bio-filters to public facilities, this study presented a method for measuring pollutant reduction effects by creating an indoor environment for continuous discharge of particle pollutants and conducted basic studies to verify whether indoor air quality has improved through the system. In this study conducted in a lecture room in spring, the background concentration was created by using mosquito repellent incense as a pollutant one hour before monitoring. Then, according to the schedule, the fine dust reduction capacity was monitored by irrigating for two hours and venting air for one hour. PM10, PM2.5, and temperature & humidity sensors were installed two meters front of the bio-filters, and velocity probes were installed at the center of the three air vents to conduct time-series monitoring. The average face velocity of three air vents set up in the bio-filter was 0.38±0.16 m/s. Total air-conditioning air volume was calculated at 776.89±320.16㎥/h by applying an air vent area of 0.29m×0.65m after deducing damper area. With the system in operation, average temperature and average relative humidity were maintained at 21.5-22.3℃, and 63.79-73.6%, respectively, which indicates that it satisfies temperature and humidity range of various conditions of preceding studies. When the effects of raising relatively humidity rapidly by operating system's air-conditioning function are used efficiently, it would be possible to reduce indoor fine dust and maintain appropriate relative humidity seasonally. Concentration of fine dust increased the same in all cycles before operating the bio-filter system. After operating the system, in cycle 1 blast section (C-1, β=-3.83, β=-2.45), particulate matters (PM10) were lowered by up to 28.8% or 560.3㎍/㎥ and fine particulate matters (PM2.5) were reduced by up to 28.0% or 350.0㎍/㎥. Then, the concentration of find dust (PM10, PM2.5) was reduced by up to 32.6% or 647.0㎍/㎥ and 32.4% or 401.3㎍/㎥ respectively through reduction in cycle 2 blast section (C-2, β=-5.50, β=-3.30) and up to 30.8% or 732.7㎍/㎥ and 31.0% or 459.3㎍/㎥ respectively through reduction in cycle 3 blast section (C-3, β=5.48, β=-3.51). By referring to standards and regulations related to the installation of vegetation bio-filters in public facilities, this study provided plans on how to set up objective performance evaluation environment. By doing so, it was possible to create monitoring infrastructure more objective than a regular lecture room environment and secure relatively reliable data.

Utilization of $CO_2$ Influenced by Windbreak in an Elevated Production System for Strawberry (딸기 고설재배시설에서의 이산화탄소 농도 유지를 위한 방풍막 설치 효과)

  • Kim, Y.-H.;Lee, I.-B.;Chun, Chang-Hoo;Hwang, H.-S.;Hong, S.-W.;Seo, I.-H.;Yoo, J.-I.;Bitog, Jessie P.;Kwon, K.-S.
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.29-39
    • /
    • 2009
  • The influence of windbreak to minimize the ventilation velocity near the plant canopy of a greenhouse strawberry was thoroughly investigated using computational fluid dynamics (CFD) technology. Windbreaks were constructed surrounding the plant canopy to control ventilation and maintain the concentration of the supplied $CO_2$ from the soil surface close to the strawberry plants. The influence of no windbreak, 0.15 m and 0.30 m height windbreaks with varied air velocity of 0.5, 1.0 and 1.5 m/s were simulated in the study. The concentrations of supplied $CO_2$ within the plant canopy of were measured. To simplify the model, plants were not included in the final model. Considering 1.0m/s wind velocity which is the normal wind velocity of greenhouses, the concentrations of $CO_2$ were approximately 420, 580 and 653 ppm ($1{\times}10^{-9}kg/m^3$) for no windbreak, 0.15 and 0.30 m windbreak height, respectively. Considering that the maximum concentration of $CO_2$ for the strawberry plants was around 600-800 ppm, the 0.30 m windbreak height is highly recommended. This study revealed that the windbreak was very effective in preserving $CO_2$ gas within the plant canopy. More so, the study also proved that the CFD technique can be used to determine the concentration of $CO_2$ within the plant canopy for the plants consumption at any designed condition. For an in-depth application of this study, the plants as well as the different conditions for $CO_2$ utilization, etc. should be considered.