• Title/Summary/Keyword: 최대풍속

Search Result 359, Processing Time 0.024 seconds

Effect of Artificial Changes in Geographical Features on Local Wind (인공적 지형변화가 국지풍에 미치는 영향)

  • Kim, Do-Yong;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.185-194
    • /
    • 2016
  • The effect of artificial changes in geographical features on local wind was analyzed at the construction site of bridge and fill-up bank in the southern part of Haui-do. Geographic Information System (GIS) data and Computational Fluid Dynamics (CFD) model were used in this study. Three-dimensional numerical topography based on the GIS data for the target area was constructed for the surface boundary input data of the CFD model. The wind observations at an Automatic Weather Station (AWS) located in Haui-do were used to set-up the model inflows. The seasonal simulations were conducted. The differences in surface wind speed between after and before artificial changes in geographical features were analyzed. The surface wind speed decreases 5 to 20% at the south-western part and below 2% of the spatial average for salt field. There was also marked the effect of artificial changes in geographical features on local wind in the westerly wind case for the target area.

Vibration Control for Tower of Suspension Bridge under Turbulence using TMD (난류하에서의 TMD에 의한 현수교 주탑의 진동제어)

  • Kim, Ki Du;Hwang, Yoon Koog;Byun, Yun Joo;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.181-191
    • /
    • 1997
  • Before cables are constructed, tower of suspension bridge is behaved as a cantilever type. Buffeting occured by unsteady loading of the tower due to velocity fluctuation in the oncoming flow has a wind velocity consistent with fundamental frequency of the tower and may give rise to large response by the tower resonance. To reduce the dynamic response by buffeting, the behavior of tower with TMD(Tuned Mass Damper) has studied using finite element method in time domain. The buffeting was obtained by transforming the velocity spectrum in frequency domain to random variable in certain time domain. The most probable maximum displacement which can be occured during the time interval was obtained using peak factor. The optimum location for TMD installation and TMD specification were decided by parametric study. Also, the effect of vibration control about various wind velocity was studied by the TMD which has optimum specification and location.

  • PDF

The Comparison of the Stability of a Container Crane according to various Wind Load Design Codes (풍하중 설계 기준에 따른 컨테이너 크레인의 안정성 비교)

  • Lee Seong-Wook;Shim Jae-Joon;Han Dong-Seop;Han Geun-Jo;Kim Tae-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.561-566
    • /
    • 2005
  • This study was carried out to amlyze and compare the stability of a 50ton container crane according to various wind load design codes. The wind load was evaluated according to 'The Specification of Port Facilities and Equipments / Specification for the design of crane structures (KS A 1627)' and 'Load Criteria of Building Structures' effected by the ministry of construction & transportation And the uplift forces qf a container crane under this wind load were estimated by amlyzing reaction forces at each supporting point and compared each other. From this study, we noticed that the design wind velocity criteria need to be defined specifically when the wind load is evaluated to design a container crane. And we verified the necessity of the estimation of the uplift forces at each supporting point to analyze a structural stability of a container crane and the maximum compressive force in order to consider the stability of the ground foundation of the berth.

Optimization for the Humidification Performance of a Residential Rotor-Type Humidifying Element (가정용 로터식 가습 소자의 가습 성능 최적화)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.7-13
    • /
    • 2017
  • A comfortable indoor environment is important considering that many hours are spent in residential or office space. A humidifier is used to control the indoor humidity. In particular, an element type humidifier has the advantage of a simple structure and low energy consumption. Two types of humidifiers - stationary or rotor - are commonly used for residential purposes. In this study, performance optimization was conducted for a rotor-type humidifying element used in a residential humidifier. The optimization included the rotation speed, water submersion depth, etc. The test range consisted of an open area to the air from 57 to 90%, rotation speed from 0.2 to 2.0 rpm, frontal air velocity from 0.5 to 2.5 m/s. The results showed that the optimal open area to air was 70%. On the other hand, the effects of the rotation speed on the moisture transfer rate was negligible. On the other hand, the pressure drop increased with increasing rotation speed. As the frontal air velocity increased, both the moisture transfer rate and pressure drop increased. The humidification capacity of the present element was 0.08 ~ 0.31 kg/hr. A comparison of the data with the theoretical results was made.

Influence of Calm Conditions on the Atmospheric Dispersion of Radioactive Effluents at KAERI Site (한국원자력연구소 부지에서 방사성물질의 대기확산에 대한 정온상태의 영향)

  • Hwang, Won-Tae;Suh, Kyung-Suk;Kim, Eun-Han;Choi, Young-Gil;Han, Moon-Hee;Cho, Gyu-Seong
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.2
    • /
    • pp.103-107
    • /
    • 1998
  • The influence of calm conditions on the atmospheric dispersion analyses at KAERI site, which is located at a complex inland basin, was investigated. The U. S. NRC's computer programs XOQDOQ and PAVAN were used to estimate dispersion factors for routine and postulated accidental releases from nuclear facilities, respectively. The joint frequency distribution was obtained from the annual meteorological data measured in 1997 and used as input data of the computer programs. When the definition of calm is changed from 0.5 m $sec^{-1}$ to 0.21 m $sec^{-1}$, the maximum sector dispersion factor becomes 1.62 and 2.16 times higher for routine and postulated accidental releases, respectively.

  • PDF

A Basic Study on Safe Mooring Guide for Dangerous Goods Berths in Ul-San Port (울산항 위험물 부두의 안전계류에 관한 기초연구)

  • Kang, Won-Sik;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.67-73
    • /
    • 2016
  • This study analyzed the state of the vessels which were using the berth for dangerous goods more than its carrying capacity in the major dangerous cargo handling port of Ulsan in Korea, The result of the analysis showed that a ship which has 3 times more than the maximum berthing capacity was moored at berth. Accordingly, a simulation model for 50,000 DWT berth was built and carried out the mooring safety analysis with 50,000 DWT, 70,000 DWT and 100,000 DWT vessels by mooring assessment program. The evaluation was carried out according to the standard environment presented in OCIMF standards. 50,000 DWT vessel was evaluated to meet the acceptable criteria but, 70,000 DWT and 100,000 DWT vessels exceeded the acceptable limit as per external conditions. Consequently, safe mooring guidelines were suggested and also proposed the building of common 'Mooring safety guideline' for port with assessment of different cases.

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (I): with and without Turbulent Inflow (수평축 풍력터빈의 공력 하중 비교 (I): 난류 유입 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.391-398
    • /
    • 2016
  • This study focused on the aerodynamic loads of the horizontal axis wind turbine blade due to the normal turbulence inflow condition. Normal turbulence model (NTM) includes the variations of wind speed and direction, and it is characterized by turbulence intensity and standard deviation of flow fluctuation. IEC61400-1 recommends the fatigue analysis for the NTM and the normal wind profile (NWP) conditions. The aerodynamic loads are obtained at the blade hub and the low speed drive shaft for MW class horizontal axis wind turbine which is designed by using aerodynamically optimized procedure. The 6-components of aerodynamic loads are investigated between numerical results and load components analysis. From the calculated results the maximum amplitudes of oscillated thrust and torque for LSS with turbulent inflow condition are about 5~8 times larger than those with no turbulent inflow condition. It turns out that the aerodynamic load analysis with normal turbulence model is essential for structural design of the wind turbine blade.

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (II): with and without Vertical Wind Shear Effect (수평축 풍력터빈의 공력 하중 비교 (II): 수직 전단흐름 효과의 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.399-406
    • /
    • 2016
  • The large scale wind turbine blades usually experience periodic change of inflow speed due to blade rotation inside the ground shear flow region. Because of the vertical wind shear, the inflow velocity in the boundary layer region is maximum at uppermost position and minimum at lowermost position. These spatial distribution of wind speeds can lead to the periodic oscillation of the 6-component loads at hub and low speed shaft of the wind turbine rotor. In this study we compare the aerodynamic loads between two inflow conditions, i.e, uniform flow (no vertical wind shear effect) and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially bending moment and thrust at hub, and bending moments at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue analysis.

A Simple Theoretical Model for the Upwind Flow in the Southern Yellow Sea (황해남부의 역풍류에 대한 단순 이론 모델)

  • 박용향
    • 한국해양학회지
    • /
    • v.21 no.4
    • /
    • pp.203-210
    • /
    • 1986
  • A linear parallel transport model is formulated and applied to an idealized Yellow Sea, With this simple analytical model, the hither-to suspected upwind flow phenomena in the southern Yellow Sea can be reasonably explained. In deep waters where the local depth exceeds a critical depth (Hc=53m in the present model sea), pressure gradient force dominates over wind stress and contributes to an upwind flow. The estimated upwind flow velocity increases with wind speed and a maximum upwind flow occurs along the axis of the Yellow Sea embayment. For the typical south wind of 5-10 knots in summer, the upwind (southward) flow velocity along the axis of the Yellow Sea is estimated to be 1-5cm s$\^$-1/. While, for the typical north wind of 10-15 knots in winter, the upwind (northward) flow velocity is 5-12cm s$\^$-1/. These velocity ranges can be served as rough estimates for the intrusion velocity of the Yellow Sea Bottom Cold Water in summer and the Yellow Sea Warm Current in winter, respectively.

  • PDF

Thermal Characteristics of Men's Suit Ensembles (남성용 정장의 온열특성 연구)

  • Song, Min-Kyu;Jeon, Byung-Ik
    • Fashion & Textile Research Journal
    • /
    • v.1 no.3
    • /
    • pp.264-274
    • /
    • 1999
  • The thermal resistance of 60 men's suits for summer and winter was measured to determine their thermal characteristics and physical properties, including air permeability, weight, and thickness of the jackets and trousers consisted of the ensembles were measured to predict the thermal resistance of garments and ensembles. In this study, general physical properties of the men' suit ensembles were determined. In general, thickness and weight of winter ensembles were greater than those of summer ensembles. A factor which could distinguish the difference between summer and winter ensembles was the air permeability. The air permeability of summer ensembles was 3~6 times greater than those of winter ensembles. For the thermal characteristics, the thermal resistance of winter ensembles were higher than those of summer ensembles. When the wind was involved, the thermal resistance of both ensembles decreased up to 30%. In addition, the equations were developed to predict the thermal resistance of the garments and ensembles when there was no air velocity and the thermal resistance of the ensembles with air velocity of 1.2 m/sec. Looking at the equations, thickness, weight, and size of the garments were the definite factors that affect the thermal resistance of the samples.

  • PDF