• Title/Summary/Keyword: 최대지반진동속도

Search Result 44, Processing Time 0.021 seconds

Evaluation of Correlation between Earthquake Induced Settlement of Fill Dams and Ground Motion Parameters (지진 시 필댐의 침하량과 지반진동 변수 간의 상관관계 분석)

  • Baeg, Jongmin;Park, Duhee;Yoon, Jinam;Choi, Byoung-Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.65-72
    • /
    • 2018
  • Seismically induced settlement exceeding dam freeboard may lead to a dam failure. The prediction of settlement is important also because it is also reported to be strongly related to longitudinal crack width and depth, which are critical indices used for safe evaluation of dams. The empirical correlation derived from numerical simulations is most often used. In this study, two-dimensional dynamic nonlinear analyses are performed using representative CFRD and ECRD fill dams. A total of 20 recorded motions are used to account for the influence on ground motion intensity and magnitude. The calculated crest settlements are correlated to four ground motion parameters, which are peak ground acceleration (PGA), peak ground velocity (PGV), Aria Intensity ($I_A$), and magnitude. It is demonstrated that using ground motion parameters in addition to PGA can significantly increase the prediction accuracy.

Analysis of the Propagation Characteristics of Blast Vibrations in Pasir Coal Mine (파시르 탄광에서의 발파진동의 전파특성 분석)

  • Choi, Byung-Hee;Ryu, Dong-Woo;SunWoo, Choon
    • Explosives and Blasting
    • /
    • v.24 no.2
    • /
    • pp.51-63
    • /
    • 2006
  • The typical blasting method adopted in Pasir Coal Mine is a surface blasting technique with a single free face. It means that there is only one free face, which is usually the ground surface. This kind of blasting method is easy to use but inevitably causes enormous ground vibrations, which, in turn, can affect the stability of the slopes comprising the various boundaries of the open pit mine. In addition, the method also has the problem of lowering the overall blast efficiency compared to other methods such as bench blasting methods or ones with more than two free faces. In this respect, a project was launched to develop a new blasting method that is suitable for both controling the ground vibration and enhancing the blast efficiency. As a part of the project, we investigated the current blasting method of the mine, and have conducted field measurements of the ground vibrations from 12 biasts. This Paper presents the details of the typical blasting pattern and the Propagation characteristics of the ground vibration from the surface blasting in the mine. Especially, various predictive equations for peak Particle velocities that can be used to estimate the ground vibration level in the mine area were derived from the regression analyses using the measured ground vibration data.

Numerical Analysis for Dynamic Behavioral Characteristics of Submerged Floating Tunnel according to Shore Connection Designs (지반 접속부 설계에 따른 수중터널의 동적 거동 특성에 대한 수치해석적 연구)

  • Seok-Jun, Kang;Joohyun, Park;Gye-Chun, Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Submerged floating tunnels must be connected to the ground to connect continents. The displacement imbalance at the shore connection between the underground bored tunnel and submerged floating tunnel can cause stress concentration, accompanying a fracture at the shore connection. The elastic joint has been proposed as a method to relive the stress concentration, however, the effect of the elastic joints on the dynamic behavior should be evaluated. In this study, the submerged floating tunnel and shore connection under dynamic load conditions were simulated through numerical analysis using a numerical model verified through a small-scaled physical model test. The resonant frequency was considered as a dynamic behavioral characteristic of the tunnel under the impact load, and it was confirmed that the stiffness of the elastic joint and the resonant frequency exhibit a power function relationship. When the shore connection is designed with a soft joint, the resonant frequency of the tunnel is reduced, which not only increases the risk of resonance in the marine environment where a dynamic load of low frequency is applied, but also greatly increases the maximum velocity of tunnel when resonance occurs.

강지진동 분석의 최적화를 위한 고려요소

  • 이석태;조봉곤;이정모;조영삼
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.17-17
    • /
    • 2003
  • 한반도에 있어서의 지진의 영향을 분석하기 위해서는 강지진동 연구가 필수적이다. 강지진동 자료가 부족한 한반도의 특성상 모사를 통해 연구하고 있다. 강지진동 분석을 하기 위해서는 되도록 노이즈가 포함되어 있지 않은 지진파자료를 선택하여 그 지진자료의 스펙트럼 분석을 통해 감쇠상수 k, Q 등을 구한다. 이러한 감쇠상수 값을 통해 한반도의 진동 특성을 이해할 수 있다. 그러나 감쇠상수를 구하는 과정에서 감쇠상수 분석에 사용된 지진자료에 노이즈가 더해졌을 경우, 어떤 형태로 스펙트럼 영역에 영향을 미치고, 감쇠상수에는 어떤 영향을 미치는 지를 연구하여 노이즈효과를 제거할 수 있는 최적화된 분석에 관한 연구가 선행되어야 한다고 본다. 따라서 이번 연구에서는 강지진동 모사프로그램을 가지고 노이즈효과를 적용하면서 감쇠상수에 노이즈가 어떤 영향을 미치는 지에 대한 수치 해석적 연구를 실시하였다. 합성지진파에 이 합성지진파와 전혀 다른 주파수 형태를 보이는 노이즈를 강도를 달리하면서 합성해 본 결과, 노이즈효과를 고려할 수 있는 몇 가지 요소가 있음을 알 수 있었다. 감쇠상수 k값을 강지진동 모사프로그램으로부터 값을 달리하며 합성해 본 결과 노이즈효과를 보이는 것을 알 수 있었으며, 감쇠상수 k를 선형회귀를 통해 $k_{s}$$k_{q}$를 구할 때의 적용 주파수 범위를 변화시켰을 때도 일정한 양상의 노이즈 효과를 보였다. 또 지진자료와 노이즈를 중첩시킨 지진파 시계열 자료의 정부분만을 감쇠상수 k를 구하는 선형회귀에 이용했을 경우에도 노이즈 효과를 보였다. 또한 계산되어 나온 감쇠상수 값으로부터 특정지역의 지반운동의 특성을 이해할 수 있는 스펙트럼 가속도, 최대 가속도, 및 최대속도 값에 따른 감쇠식을 구하였다. 이것을 한반도와 같은 판 내부 환경인 ENA 값과 비교하였으며 기존의 연구와도 비교하였다.심으로부터 지오이드까지의 거리, 지오이드로부터 지표까지의 거리를 정의해주었으며, 각 격자점의 수직구조를 정의하기 위해 깊이에 따른 각 매질의 밀도, P파의 속도, S파의 속도, P파에 대한 Q값, S파에 대한 Q값을 정의 해주었다. S파의 속도를 구하기 위해서 지구 내부 물질을 포아송 매질이라는 가정 하에, 관계식을 $Vp{\;}={\;}SQRT(3){\;}{\times}{\;}Vs$ 이용하였다. 획득한 모델치들을 이용해 동해와 동해 인근 지역에 대한 초기모델을 구축하였다. 약 1 × 10/sup 6/ e/sup -//sec·n㎡ 의 전자선량에 해당되며 이를 기준으로 각각의 illumination angle에 대한 임계전자선량을 평가할 수 있었다. 실질적으로 Cibbsite와 같은 무기수화물의 직접가열실험 시 전자빔 조사에 의해 야기되는 상전이 영향을 배제하고 실험을 수행하려면 illumination angle 0.2mrad (Dose rate : 8000 e/sup -//sec·n㎡)이하로 관찰하고 기록되어야 함을 본 자료로부터 알 수 있었다.운동횟수에 의한 영향으로써 운동시간을 1일 6시간으로 설정하여, 운동횟수를 결정하기 위하여 오전, 오후에 각 3시간씩 운동시키는 방법과 오전부터 6시간동안 운동시키는 두 방법을 이용하여 품질을 비교하였다. 각 조건에 따라 운동시킨 참돔의 수분함량을 나타낸 것으로, 2회(오전 3시간, 오후 3시간)에 나누어서 운동시키기 위한 육의 수분함량은 73.37±2.02%를 나타냈으며, 1회(6시간 운동)운동시키기 위한 육은 71.74±1.66%을 나타내었다. 각각의 운동조건에서 양식된 참돔은 사육초기에는 큰 변화가 없었으나, 사육 5일 이후에는 수분함량이 증가하여 15일에는 76.40±0.14, 75.62±0.98%의 수분함량을 2회와 1회 운동시킨 참돔의 육에서 각각 나타났다. 운동횟수에 따른 지

  • PDF

Analysis of Response Characteristics According to Permanent Displacement in Seismic Slope (지진시 비탈면의 영구변위 발생에 따른 응답특성 분석)

  • Ahn, Jae-Kwang;Park, Sangki;Kim, Wooseok;Son, Su-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.135-145
    • /
    • 2019
  • The slope collapse can be classified into internal and external factors. Internal factors are engineering factors inherent in the formation of slopes such as soil depth, slope angle, shear strength of soil, and external factors are external loading such as earthquakes. The external factor for earthquake can be expressed by various values such as peak ground acceleration (PGA), peak ground velocity (PGV), Arias coefficient (I), natural period (Tp), and spectral acceleration (SaT=1.0). Specially, PGA is the most typical value that defines the magnitude of the ground motion of an earthquake. However, it is not enough to consider the displacement in the slope which depends on the duration of the earthquake even if the vibration has the same peak ground acceleration. In this study, numerical analysis of two-dimensional plane strain conditions was performed on engineered block, and slope responses due to seismic motion of scaling PGA to 0.2 g various event scenarios was analyzed. As a result, the response of slope is different depending on the presence or absence of sliding block; it is shown that slope response depend on the seismic wave triggering sliding block than the input motion factors.

A Case Study on the Vibration Characteristics of Tunnel Blasting in Igneous Rock (화성암반에서 터널발파 진동측정치의 분석에 관한 사례 연구)

  • 윤성현;안명석;이광열
    • Explosives and Blasting
    • /
    • v.21 no.1
    • /
    • pp.69-76
    • /
    • 2003
  • Test blasting has been performed with V-cut to investigate the characteristics. Blasting vibrations were measured at two directions, the proceed direction and side direction. Propagation characteristics were determined by regression analysis; square root scaled distance and cube root scaled distance with maximum charge per delay of the blast. Testing result, The cross point was 62m in the allowable vibration velocity of 3mm/sec and 46m In 5mm/sec. Also, vibration level with measuring point was highest and decayed fastest, adapting to cube root scaled distance, for the proceed direction on ground.

A Study on the Blasting Vibration Characteristics of Geomunoreum Lava Tubes System, Jeju Island (제주 거문오름 용암동굴계에 영향을 미치는 발파진동특성에 대한 연구)

  • Song, Jae-Yong;Lee, Geun-Chun;Ahn, Ung-San;Lim, Hyun-Muk;Moon, Seong-Woo;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.103-118
    • /
    • 2021
  • For management and preservation measures of lava tube, it is studied how the blasting vibration by constructions near Geomunoreum lava tubes in Jeju affect lava tube. 11 boreholes were drilled in study area, and in-situ blasting tests were conducted by changing from 0.5 kg to 10 kg charge per delay in those boreholes. The vibration velocity, which meets the regulatory vibration criterion during daytime, was estimated as below 0.276 cm/sec by analyzing the relationship between vibration velocity and vibration level. In addition, SRE and CRE were calculated from the results of in-situ blasting tests, and k-values were shown as 130.04 in SRE, 199.71 in CRE, respectively. Also, n-values were shown as -1.717 in SRE, -1.711 in CRE, respectively. Charge per delay were assessed based on these equations, and charges per delay had ranges of 0.57~7.42 kg/delay in estimation equation of vibration velocity, 0.21~5.29 kg/delay in SRE, and 0.04~5.51 kg/delay in CRE, considering the 0.2 kine vibration criterion for cultural heritage and the 20~100 m distance from vibration source. Additionally, the relationships which meet the criteria of 0.2 kine, were calculated by combining CRE in this study with the result of previous study. Allowable charges per delay, which meet the criteria of 0.2 kine, were evaluated as 1.07 kg/delay in 50 m, 5.13 kg/delay in 100 m and 22.26 kg/delay in 200 m distances. These relationships for each vibration velocity are useful to deduce charge per delay for the ground near Geomunoreum lava tube.

Incorporating Genetic Algorithms into the Generation of Artificial Accelerations (인공 지진파 작성을 위한 유전자 알고리즘의 적용)

  • Park, Hyung-Ghee;Chung, Hyun-Kyo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.1-9
    • /
    • 2007
  • The method of generating the artificial acceleration time histories for seismic analysis based on genetic algorithms is presented. For applying to the genetic algorithms, the frequencies are selected as the decision variables eventually to be genes. An arithmetic average crossover operator and an arithmetic ratio mutation operator are suggested in this study. These operators as well as the typical simple crossover operator are utilized in generating the artificial acceleration time histories corresponding to the specified design response spectrum. Also these generated artificial time histories are checked whether their outward features are to be coincident with the recorded earthquake motion or not. The features include envelope shape, correlation condition between 2 horizontal components of motion, and the relationship of max. acceleration, max. velocity and max. displacement of ground.

Analysis of Characteristics of Horizontal Response Spectrum of Velocity Ground Motions from 5 Macro Earthquakes (5개 중규모 지진의 속도 관측자료를 이용한 수평 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.471-479
    • /
    • 2011
  • The velocity horizontal response spectra using the observed ground motions from the recent 5 macro earthquakes, equal to or larger than 4.8 in magnitude, around Korean Peninsula were analysed and then were compared to the acceleration horizontal response spectra, seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and finally the Korean Standard Design Response Spectrum for general structures and buildings. 102 velocity horizontal ground motions, including NS and EW components, were used for velocity horizontal response spectra and then normalized with respect to the peak velocity value of each ground motion. First, the results showed that velocity horizontal response spectra have larger values at the range of medium natural period, but acceleration horizontal response spectra have larger values at the range of short natural periods. Secondly, the results also showed that velocity horizontal response spectra exceed Reg. Guide 1.60 for longer natural periods bands less than 6-7 Hz. Finally, the results were also compared to the Korean Standard Response Spectrum for the 3 different soil types(SC, SD, and SE soil type) and showed that velocity horizontal response spectra revealed much higher values for the frequency bands below 1.5(SC), 2.0(SD), and 3.0(SE) seconds, respectively, than the Korean Standard Response Spectrum. The results suggest that the fact that acceleration, velocity, and displacement horizontal response spectra have larger values at the range of short, medium, and long natural periods, respectively, can be applied consistently to those form domestic ground motion, especially, the velocity ground motion. Information on response spectrum at such medium range periods can be very important since the domestic design of buildings and structures emphasizes recently medium and long natural periods than short one due to increased super high-rise buildings.

Nonlinear Dynamic Behavior of Temporary Rail Considering the Effect of Vibration (진동영향을 고려한 가시설 레일의 동적 거동 특성)

  • Lim, Hyung Joon;Ryu, Dong Hyeon;Won, Jong Hwa;Kim, Moon Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.171-178
    • /
    • 2008
  • The object of this study is to propose a rate of vibration increase in the analysis of temporary rail non-fixed in the vertical direction and characterize the nonlinear dynamic behavior of temporary rail while considering longitudinal and latitudinal load, vibration and lifting. The rate of vibration increase is proposed through measurement of an actual structure that is largely affected by loading and vibration of the superstructure. Dynamic behavior was additionally characterized by the dynamic response resulting from nonlinear dynamic finite element analysis with vehicle loading, including the rate of vibration increase. As a result, the rate of vibration increase by the vibration of an Auto Bar Machine is determined as 7% and the maximum stress in the analysis of the nonlinear rail is increased 14.5% over that of linear rail, and temporary rail is shown to be very sensitive to the velocity of the superstructure.