• Title/Summary/Keyword: 최대지반가속도

Search Result 138, Processing Time 0.026 seconds

Train-Structure Dynamic Interaction Analysis of The Bridge Transition Considering Track Irregularity (궤도틀림을 고려한 교대접속부의 열차상호동적거동해석)

  • Choi, Chan-Yong;Kim, Hun-Ki;Chung, Keun-Young;Yang, Sang-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, track dynamic interaction characteristics caused by the vehicle running through transitional section such as bridge abutments were studied using the finite element analysis program. The geometric condition of track was generated by trigonometric function and allowable maximum track irregularity is determined by KORAIL track maintenance criteria. The sub-infrastructure under rail fastener system was modelled by 3D solid elements. To reduce computational cost only half track line is numerically considered and the roller boundary condition was applied to each side of model. In this study, the vehicle-track dynamic interaction analysis was carried out for standard Korean transition section of concrete track and the dynamic behaviors were investigated. The dynamic characteristics considered are wheel load variation, vertical acceleration at body, and maximum Mises stress at each part of transitional section.

Seismic Risk Assessment of Bridges Using Fragility Analysis (지진취약도분석을 통한 교량의 지진위험도 평가)

  • Yi, Jin-Hak;Youn, Jin-Yeong;Yun, Chung-Bang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.31-43
    • /
    • 2004
  • Seismic risk assessment of bridge is presented using fragility curves which represent the probability of damage of a structure virsus the peak ground acceleration. In theseismic fragility analysis, the structural damage is defined using the rotational ductility at the base of the bridge pier, which is obtained through nonlinear dynamic analysis for various input earthquakes. For the assessment of seismic risk of bridge, peak ground accelerations are obatined for various return periods from the seismic hazard map of Korea, which enables to calculate the probability density function of peak ground acceleration. Combining the probability density function of peak ground acceleration and the seismic fragility analysis, seismic risk assessment is performed. In this study, seismic fragility analysis is developed as a function of not the surface motion which the bridge actually suffers, but the rock outcrop motion which the aseismic design code is defined on, so that further analysis for the seismic hazard assessment may become available. Besides, the effects of the friction pot bearings and the friction pendulum bearings on the seismic fragility and risk analysis are examined. Lastly, three regions in Korea are considered and compared in the seismic risk assessment.

Evaluation of seismic fragility models for cut-and-cover railway tunnels (개착식 철도 터널 구조물의 기존 지진취약도 모델 적합성 평가)

  • Yang, Seunghoon;Kwak, Dongyoup
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • A weighted linear combination of seismic fragility models previously developed for cut-and-cover railway tunnels was presented and the appropriateness of the combined model was evaluated. The seismic fragility function is expressed in the form of a cumulative probability function of the lognormal distribution based on the peak ground acceleration. The model uncertainty can be reduced by combining models independently developed. Equal weight is applied to four models. The new seismic fragility function was developed for each damage level by determining the median and standard deviation, which are model metrics. Comparing fragility curves developed for other bored tunnels, cut-and-cover tunnels for high-speed railway system have a similar level of fragility. We postulated that this is due to the high seismic design standard for high-speed railway tunnel.

Inelastic Response Spectra Due to the Weak Earthquakes Considering the Nonlinear Soft Soil Layer (비선형 연약지반을 고려한 약진에 의한 비탄성 응답스펙트럼)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.15-22
    • /
    • 2003
  • Seismic design codes developed taking into account the strong earthquakes may result in unnecessary economical loss in the low seismic area, and the importance of the performance based design considering the soil-structure interaction is recognized for the reasonable seismic design. In this study. elastic and inelastic seismic response analyses of a single degree of freedom system on the soft soil layer were performed considering the nonlinearity of the soil for the 1 weak earthquakes scaled to the nominal peak accelerations of 0.07g and 0.11g. The seismic response analyses were performed in one step applying the earthquake motions to the bedrock, utilizing a pseudo 3-D dynamic analysis software of the soil-structure system. The study results indicated that seismic response spectra of a system assuming the rigid base or the linear soil layer does not represent the true behavior of a structure-soil system, and it is necessary to take into account the nonlinear soil-structure interaction effects and to perform the performance based seismic design for the various soil layers, having different characteristics, rather than to follow the routine design procedures specified in the design codes for the reasonable seismic design. The nonlinearity of the soft soil excited with the weak seismic motions also affected significantly on the elastic and inelastic seismic response spectra of a system due to the nonlinear soil amplification of the earthquake motions, and it was pronounced especially for the elastic response spectra.

Seismic performance evaluation of middle-slab vibration damping rubber bearings in multi-layer tunnel through full-scale shaking table (실대형 진동대 시험을 통한 복층터널 중간 슬래브 진동 감쇠 고무받침 내진성능 평가)

  • Jang, Dongin;Park, Innjoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.337-346
    • /
    • 2020
  • Traffic jam and congestion in urban areas has caused the need to improve the utility of underground space. In response, research on underground structures is increasingly being conducted. Notably, a double-deck tunnel is one of the most widely used of all those underground structures. This double-deck tunnel is separated by the middle slab into the upper and lower roadways. Both vehicle load and earthquake load cause the middle slab to exhibit dynamic behavior. Earthquake-related response characteristics, in particular, are highly complex and difficult to interpret in a theoretical context, and thus experimental research is required. The aim of the present study is to assess the stability of a double-deck tunnel's middle slab of the Collapse Prevention Level and Seismic Category 1 with regard to the presence of vibration-damping Rubber Bearings. In vibration table tests, the ratio of similitude was set to 1/4. Linings and vibrating platforms were fixed during scaled model tests to represent the integrated behavior of the ground and the applied models. In doing so, it was possible to minimize relative behavior. The standard TBM cross-section for the virtual double-deck tunnel was selected as a test subject. The level of ground motion exerted on the bedrock was set to 0.154 g (artificial seismic wave, Collapse Prevention Level and Seismic Category 1). A seismic wave with the maximum acceleration of 0.154 g was applied to the vibration table input (bedrock) to analyze resultant amplification in the models. As a result, the seismic stability of the middle slab was evaluated and analyzed with respect to the presence of vibration-damping rubber bearings. It was confirmed that the presence of vibration-damping rubber bearings improved its earthquake acceleration damping performance by up to 40%.

Evaluation of the Influence of Shear Strength Correction through a Comparative Study of Nonlinear Site Response Models (비선형 지반구성모델의 비교를 통한 전단강도 보정이 부지응답해석에 미치는 영향 평가)

  • Aaqib, Muhammad;Park, Duhee;Kim, Hansup;Adeel, Muhammad Bilal;Nizamani, Zubair Ahmed
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.77-86
    • /
    • 2020
  • In this study, the importance of implied strength correction for shallow depths at a region of moderate to low seismicity with primary focus on its effect upon site natural period and mean period of the ground motion is investigated. In addition to the most commonly used Modified Kondner-Zelasko (MKZ) model, this paper uses a quadratic/hyperbolic (GQ/H) model that can capture the stress - strain response at large strains as well as small strain stiffness dependence. A total of six site profiles by downhole tests are used and 1D site response analyses are performed using three input motions with contrasting mean periods. The difference between non-corrected and corrected analyses is conditional on the site period as well as mean ground motion period. The effect of periods is analyzed by correlating them with the effective peak ground acceleration, maximum shear strains and amplification factors. The comparative study reveals that the difference is more prominent in soft sites with long site periods. Insignificant differences are observed when soil profiles are subjected to ground motion with very short mean period.

Inelastic Time History Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.633-641
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint on the response of RC OMRF are evaluated in the inelastic time history analysis. For an example, a 5-story structure for site class SB and seismic design category C was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was evaluated using fiber model and bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship. The hysteretic behavior was simulated using three-parameter model suggested in IDARC program. The inelastic time history analysis with PGA for return period of 2400 years showed that the model with inelastic beam-column joint yielded smaller maximum base shear force but nearly equivalent maximum roof displacement and maximum story drift as those obtained from analysis using rigid joint. The maximum story drift satisfied the criteria of KBC2009. Therefore, the inelastic shear behavior of beam-column joint could be neglected in the structural design.

Construction of Design Table for Envelope Curve Analysis of Base Isolated Buildings (면진건물의 포락해석을 위한 설계용 도표 산정면진건물의 포락해석을 위한 설계용 도표 산정면진건물의 포락해석을 위한 설계용 도표 산정)

  • Lee, Hyun-Ho;Cheon, Yeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.59-67
    • /
    • 2006
  • The aim of this study is to evaluate the design table for envelope curve analysis of base isolated buildings, which represent the period of base isolated buildings and the lateral displacement of base isolation devices. For the construction of design table, $V_E$ spectrum, which represents the energy, is developed instead of acceleration of seismic hazard. Based on the seismic coefficient of UBC 97, boundary period $T_G$ and maximum velocity response $V_0$ are proposed considering Korea seismic hazard. Using $T_G$ and $V_0$, finally, $V_E$ spectrum is developed for the four types of soil conditions. Base on the $V_E$ spectrum, design table for envelope curve analysis is also developed for soil types.

Displacement Based Seismic Performance Improved Design of RC Column Retrofitted Steel Jacket (변위기반 설계법에 의한 RC 기둥의 Steel Jacket 보강 내진성능개선 설계법)

  • Jung, In-Kju;Cho, Chang-Geun;Park, Soon-Eung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.49-57
    • /
    • 2010
  • This study is the research appling the representative Displacement-Based Design which is the basic concept of Direct Displacement Based Design proposed by Chopra and Goel to original Reinforced Concrete structure and determining the thickness of retrofit Steel Jacket about the Maximum design ground acceleration, and developing the more improved Algorithm as well as program by the Retrofit Design method and Nonlinear analysis by the Performance design method before and after reinforcement appling the determined retrofit thickness. To predict the target displacement of retrofitted columns, a nonlinear analysis model of reinforced concrete columns has been developed to be based on the nonlinear fiber cross-sectional and segmental analysis model, and the seismic displacement level of retrofitted columns is estimated by two procedures, the direct displacement-based design method and the displacement coefficient method. In examples of seismic retrofit design, the current seismic improved design method gives good results in improvements of displacement levels and displacement ductilities of retrofitted columns.

  • PDF

Analysis of Response Spectrum of Ground Motions from Recent Earthquakes (최근 발생지진 관측자료를 이용한 응답스펙트럼 분석)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.490-497
    • /
    • 2009
  • The horizontal and vertical response spectra using the observed ground motion from the recent 5 macro earthquakes were analysed and then were compared to both the seismic design response spectra(Reg Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings(1997). 74 horizontal and 89 vertical observed ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that the horizontal MPOSD(Mean Plus One Sigma Standard Deviation) response spectra revealed much higher values for the whole frequency bands above 1 Hz than Reg. Guide(1.60). For the vertical response spectra, the results showed slightly higher than just between 7 and 8 Hz frequency band. The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the horizontal MPOSD response spectra revealed much higher values for the whole periods below 2 second(0.5 Hz) than those of SE soil type. The vertical response spectra showed similar to the values of the Korean Standard Response Spectrum of SD soil type. These spectral values dependent on frequency could be related to characteristics of the domestic crustal attenuation and the effect of each site amplification. However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of horizontal seismic design response spectrum should be considered more significantly for the whole frequency bands above the 1 Hz.